DeLucia Alyssa A, Olshansky Lisa
Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, United States.
Inorg Chem. 2024 Jan 15;63(2):1109-1118. doi: 10.1021/acs.inorgchem.3c03470. Epub 2024 Jan 3.
Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their mechanistic details. We report here the direct observation of a carboxylate shift reaction in biomimetic yet structurally stable dicobalt complexes featuring both monodentate and bridging acetate ligands, as well as intramolecular hydrogen-bonding interactions. Subjecting the series of complexes [Co(μ-OH)(μ-1,3-OAc)(κ-OAc)(py)]PF ([]PF, OAc = acetate, py = pyridine with -R substituents: OMe, H, or CN) to a Lewis acid triggers conversion of a monodentate acetate to a μ-1,3 bridging mode, forming [Co(μ-OH)2(μ-1,3-OAc)(py)] ([]). [] is susceptible to solvent binding, affording [Co(μ-OH)(μ-1,3-OAc)(κ-OAc)(MeCN)(py)] ([]) in MeCN. These reaction products and intermediates were isolated and characterized in the solid state by isotopic labeling and Fourier transform infrared (FTIR) spectroscopy, as well as by X-ray diffraction. The kinetics of the formation and decay of [], [], and [] were also examined in situ by H-NMR spectroscopy to provide a kinetic model for the carboxylate shift reaction. The rate constants extracted from global fit analyses of these reactions increase with increasing electron donation from R. Leveraging robust diamagnetic Co complexes, these studies provide mechanistic details of carboxylate shift reactivity and highlight the utility of ligand dynamicity in mediating the transient formation of unstable metal complexes.
羧酸盐迁移机制提供了低能量途径,以适应金属酶活性位点催化过程中所需的氧化态和配位数的变化。在其天然酶中观察这些过程具有挑战性,而分子模型可以深入了解其机制细节。我们在此报告了在具有单齿和桥联乙酸根配体以及分子内氢键相互作用的仿生但结构稳定的二钴配合物中对羧酸盐迁移反应的直接观察。使一系列配合物[Co(μ-OH)(μ-1,3-OAc)(κ-OAc)(py)]PF([PF,OAc = 乙酸根,py = 吡啶,带有 -R 取代基:OMe、H 或 CN)与路易斯酸反应,会触发单齿乙酸根向 μ-1,3 桥联模式的转化,形成[Co(μ-OH)2(μ-1,3-OAc)(py)]([])。[]易受溶剂结合影响,在乙腈中生成[Co(μ-OH)(μ-1,3-OAc)(κ-OAc)(MeCN)(py)]([])。这些反应产物和中间体通过同位素标记和傅里叶变换红外(FTIR)光谱以及 X 射线衍射在固态下进行了分离和表征。还通过 1H-NMR 光谱原位研究了[]、[]和[]的形成和衰减动力学,以提供羧酸盐迁移反应的动力学模型。从这些反应的全局拟合分析中提取的速率常数随着 R 的供电子能力增强而增加。利用稳健的抗磁性钴配合物,这些研究提供了羧酸盐迁移反应性的机制细节,并突出了配体动态性在介导不稳定金属配合物瞬态形成中的作用。