Suppr超能文献

单倍型相关 RNA 表达 (HARE) 可提高玉米复杂性状的预测能力。

Haplotype associated RNA expression (HARE) improves prediction of complex traits in maize.

机构信息

Institute of Genomic Diversity, Cornell University, Ithaca, New York.

Plant Breeding and Genetics Section, Cornell University, Ithaca, New York.

出版信息

PLoS Genet. 2021 Oct 4;17(10):e1009568. doi: 10.1371/journal.pgen.1009568. eCollection 2021 Oct.

Abstract

Genomic prediction typically relies on associations between single-site polymorphisms and traits of interest. This representation of genomic variability has been successful for predicting many complex traits. However, it usually cannot capture the combination of alleles in haplotypes and it has generated little insight about the biological function of polymorphisms. Here we present a novel and cost-effective method for imputing cis haplotype associated RNA expression (HARE), studied their transferability across tissues, and evaluated genomic prediction models within and across populations. HARE focuses on tightly linked cis acting causal variants in the immediate vicinity of the gene, while excluding trans effects from diffusion and metabolism. Therefore, HARE estimates were more transferrable across different tissues and populations compared to measured transcript expression. We also showed that HARE estimates captured one-third of the variation in gene expression. HARE estimates were used in genomic prediction models evaluated within and across two diverse maize panels-a diverse association panel (Goodman Association panel) and a large half-sib panel (Nested Association Mapping panel)-for predicting 26 complex traits. HARE resulted in up to 15% higher prediction accuracy than control approaches that preserved haplotype structure, suggesting that HARE carried functional information in addition to information about haplotype structure. The largest increase was observed when the model was trained in the Nested Association Mapping panel and tested in the Goodman Association panel. Additionally, HARE yielded higher within-population prediction accuracy as compared to measured expression values. The accuracy achieved by measured expression was variable across tissues, whereas accuracy by HARE was more stable across tissues. Therefore, imputing RNA expression of genes by haplotype is stable, cost-effective, and transferable across populations.

摘要

基因组预测通常依赖于单一位点多态性与感兴趣性状之间的关联。这种基因组变异性的表示形式在预测许多复杂性状方面取得了成功。然而,它通常无法捕捉单倍型中等位基因的组合,并且对多态性的生物学功能也没有产生太多的了解。在这里,我们提出了一种新颖且具有成本效益的方法,用于推断顺式单倍型相关的 RNA 表达(HARE),研究了它们在组织间的可转移性,并评估了群体内和群体间的基因组预测模型。HARE 专注于基因附近紧密连锁的顺式作用因果变异,同时排除扩散和代谢的转录效应。因此,与测量的转录表达相比,HARE 估计在不同组织和群体间更具可转移性。我们还表明,HARE 估计捕获了三分之一的基因表达变异。HARE 估计值用于在两个不同的玉米面板内和跨面板评估的基因组预测模型中,用于预测 26 个复杂性状-一个是多样化的关联面板(Goodman Association panel),另一个是大型半同胞面板(Nested Association Mapping panel)。与保留单倍型结构的对照方法相比,HARE 导致高达 15%的预测准确性提高,这表明 HARE 除了单倍型结构信息外,还携带了功能信息。当模型在嵌套关联映射面板中进行训练并在 Goodman Association 面板中进行测试时,观察到的增加最大。此外,与测量的表达值相比,HARE 产生了更高的群体内预测准确性。与 HARE 相比,测量的表达准确性在组织间具有变异性,而 HARE 的准确性在组织间更稳定。因此,通过单倍型推断基因的 RNA 表达是稳定的、具有成本效益的,并且在群体间具有可转移性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b31/8516254/c761fe7dd3c3/pgen.1009568.g001.jpg

相似文献

1
Haplotype associated RNA expression (HARE) improves prediction of complex traits in maize.
PLoS Genet. 2021 Oct 4;17(10):e1009568. doi: 10.1371/journal.pgen.1009568. eCollection 2021 Oct.
8
Linkage disequilibrium and haplotype block patterns in popcorn populations.
PLoS One. 2019 Sep 25;14(9):e0219417. doi: 10.1371/journal.pone.0219417. eCollection 2019.
10
Genome-Wide Analyses and Prediction of Resistance to MLN in Large Tropical Maize Germplasm.
Genes (Basel). 2019 Dec 23;11(1):16. doi: 10.3390/genes11010016.

引用本文的文献

1
Predicting gene expression responses to environment in using natural variation in DNA sequence.
bioRxiv. 2025 Mar 4:2024.04.25.591174. doi: 10.1101/2024.04.25.591174.

本文引用的文献

1
Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors.
Nat Commun. 2020 Oct 9;11(1):5089. doi: 10.1038/s41467-020-18832-8.
2
Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions.
Plant Cell. 2020 Jul;32(7):2083-2093. doi: 10.1105/tpc.19.00951. Epub 2020 May 12.
3
4
Transcriptome-Based Prediction of Complex Traits in Maize.
Plant Cell. 2020 Jan;32(1):139-151. doi: 10.1105/tpc.19.00332. Epub 2019 Oct 22.
5
Trans Effects on Gene Expression Can Drive Omnigenic Inheritance.
Cell. 2019 May 2;177(4):1022-1034.e6. doi: 10.1016/j.cell.2019.04.014.
6
Integrating Gene Expression Data Into Genomic Prediction.
Front Genet. 2019 Feb 25;10:126. doi: 10.3389/fgene.2019.00126. eCollection 2019.
7
Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence.
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5542-5549. doi: 10.1073/pnas.1814551116. Epub 2019 Mar 6.
8
Breaking the curse of dimensionality to identify causal variants in Breeding 4.
Theor Appl Genet. 2019 Mar;132(3):559-567. doi: 10.1007/s00122-018-3267-3. Epub 2018 Dec 13.
9
Genetic architecture of gene expression traits across diverse populations.
PLoS Genet. 2018 Aug 10;14(8):e1007586. doi: 10.1371/journal.pgen.1007586. eCollection 2018 Aug.
10
Genetics of -regulatory variation in gene expression.
Elife. 2018 Jul 17;7:e35471. doi: 10.7554/eLife.35471.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验