Suppr超能文献

在多个玉米(Zea mays L.)品系杂交的家系中进行联合连锁和连锁不平衡 QTL 作图,突出了基于亲本单倍型和单一位点多态性的模型之间的互补性。

Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism.

机构信息

UMR0320/UMR8120 de Génétique Végétale, INRA, Université Paris-Sud, CNRS, Ferme du Moulon, 91190, Gif-sur-Yvette, France.

出版信息

Theor Appl Genet. 2013 Nov;126(11):2717-36. doi: 10.1007/s00122-013-2167-9. Epub 2013 Aug 23.

Abstract

Advancements in genotyping are rapidly decreasing marker costs and increasing marker density. This opens new possibilities for mapping quantitative trait loci (QTL), in particular by combining linkage disequilibrium information and linkage analysis (LDLA). In this study, we compared different approaches to detect QTL for four traits of agronomical importance in two large multi-parental datasets of maize (Zea mays L.) of 895 and 928 testcross progenies composed of 7 and 21 biparental families, respectively, and genotyped with 491 markers. We compared to traditional linkage-based methods two LDLA models relying on the dense genotyping of parental lines with 17,728 SNP: one based on a clustering approach of parental line segments into ancestral alleles and one based on single marker information. The two LDLA models generally identified more QTL (60 and 52 QTL in total) than classical linkage models (49 and 44 QTL in total). However, they performed inconsistently over datasets and traits suggesting that a compromise must be found between the reduction of allele number for increasing statistical power and the adequacy of the model to potentially complex allelic variation. For some QTL, the model exclusively based on linkage analysis, which assumed that each parental line carried a different QTL allele, was able to capture remaining variation not explained by LDLA models. These complementarities between models clearly suggest that the different QTL mapping approaches must be considered to capture the different levels of allelic variation at QTL involved in complex traits.

摘要

基因分型的进步正在迅速降低标记成本并增加标记密度。这为绘制数量性状基因座(QTL)开辟了新的可能性,特别是通过结合连锁不平衡信息和连锁分析(LDLA)。在这项研究中,我们比较了两种不同的方法,以检测两个大型多亲本玉米(Zea mays L.)数据集(分别由 7 和 21 个双亲系组成的 895 和 928 个测验杂交后代)中四个农艺重要性状的 QTL,这些数据集的基因型用 491 个标记进行了检测。我们将两种基于 LDLA 的模型与传统的基于连锁的方法进行了比较,这两种 LDLA 模型都依赖于对亲本系进行密集的基因分型,其中包含 17728 个 SNP:一种基于亲本系段聚类为祖先等位基因的方法,另一种基于单个标记信息的方法。这两种 LDLA 模型通常比传统的连锁模型鉴定出更多的 QTL(总共 60 和 52 个 QTL)。然而,它们在数据集和性状上的表现不一致,这表明必须在减少等位基因数量以增加统计效力和模型对潜在复杂等位基因变异的适当性之间找到折衷。对于一些 QTL,仅基于连锁分析的模型(假设每个亲本系携带不同的 QTL 等位基因)能够捕捉到 LDLA 模型无法解释的剩余变异。这些模型之间的互补性清楚地表明,必须考虑不同的 QTL 映射方法来捕获涉及复杂性状的 QTL 中不同水平的等位基因变异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验