Suppr超能文献

标准的基因敲除程序会在翻译水平上改变邻近基因座的表达。

A standard knockout procedure alters expression of adjacent loci at the translational level.

机构信息

Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700, Russia.

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.

出版信息

Nucleic Acids Res. 2021 Nov 8;49(19):11134-11144. doi: 10.1093/nar/gkab872.

Abstract

The Saccharomyces cerevisiae gene deletion collection is widely used for functional gene annotation and genetic interaction analyses. However, the standard G418-resistance cassette used to produce knockout mutants delivers strong regulatory elements into the target genetic loci. To date, its side effects on the expression of neighboring genes have never been systematically assessed. Here, using ribosome profiling data, RT-qPCR, and reporter expression, we investigated perturbations induced by the KanMX module. Our analysis revealed significant alterations in the transcription efficiency of neighboring genes and, more importantly, severe impairment of their mRNA translation, leading to changes in protein abundance. In the 'head-to-head' orientation of the deleted and neighboring genes, knockout often led to a shift of the transcription start site of the latter, introducing new uAUG codon(s) into the expanded 5' untranslated region (5' UTR). In the 'tail-to-tail' arrangement, knockout led to activation of alternative polyadenylation signals in the neighboring gene, thus altering its 3' UTR. These events may explain the so-called neighboring gene effect (NGE), i.e. false genetic interactions of the deleted genes. We estimate that in as much as ∼1/5 of knockout strains the expression of neighboring genes may be substantially (>2-fold) deregulated at the level of translation.

摘要

酿酒酵母基因缺失集被广泛用于功能基因注释和遗传互作分析。然而,用于产生敲除突变体的标准 G418 抗性盒将强调控元件引入靶基因座。迄今为止,其对邻近基因表达的副作用从未被系统评估过。在这里,我们使用核糖体分析数据、RT-qPCR 和报告基因表达,研究了 KanMX 模块引起的扰动。我们的分析显示,邻近基因的转录效率发生了显著变化,更重要的是,它们的 mRNA 翻译受到严重抑制,导致蛋白质丰度发生变化。在缺失和邻近基因的“头对头”取向中,敲除通常导致后者转录起始位点的转移,在扩展的 5'非翻译区(5'UTR)中引入新的 uAUG 密码子。在“尾对尾”排列中,敲除导致邻近基因中替代多聚腺苷酸化信号的激活,从而改变其 3'UTR。这些事件可能解释了所谓的邻近基因效应(NGE),即缺失基因的假遗传相互作用。我们估计,在多达 1/5 的敲除菌株中,邻近基因的表达可能在翻译水平上被显著(>2 倍)失调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a2/8565318/5fbcf91cd1d4/gkab872fig1.jpg

相似文献

1
A standard knockout procedure alters expression of adjacent loci at the translational level.
Nucleic Acids Res. 2021 Nov 8;49(19):11134-11144. doi: 10.1093/nar/gkab872.
2
Poly(A)-tail-promoted translation in yeast: implications for translational control.
RNA. 1998 Nov;4(11):1321-31. doi: 10.1017/s1355838298980669.
3
Multiple transcripts from a 3'-UTR reporter vary in sensitivity to nonsense-mediated mRNA decay in Saccharomyces cerevisiae.
PLoS One. 2013 Nov 18;8(11):e80981. doi: 10.1371/journal.pone.0080981. eCollection 2013.
5
8
Tetracycline-aptamer-mediated translational regulation in yeast.
Mol Microbiol. 2003 Sep;49(6):1627-37. doi: 10.1046/j.1365-2958.2003.03656.x.

引用本文的文献

2
tRNA modification profiling reveals epitranscriptome regulatory networks in .
bioRxiv. 2024 Jul 2:2024.07.01.601603. doi: 10.1101/2024.07.01.601603.
3
Practical Approaches for the Yeast Genome Modification.
Int J Mol Sci. 2023 Jul 26;24(15):11960. doi: 10.3390/ijms241511960.
4
Global analysis of the yeast knockout phenome.
Sci Adv. 2023 May 26;9(21):eadg5702. doi: 10.1126/sciadv.adg5702.
7
Ribo-Seq and RNA-Seq of ( ) and ( ) knockout yeast strains.
F1000Res. 2021 Nov 16;10:1162. doi: 10.12688/f1000research.74727.1. eCollection 2021.

本文引用的文献

1
Global Genetic Networks and the Genotype-to-Phenotype Relationship.
Cell. 2019 Mar 21;177(1):85-100. doi: 10.1016/j.cell.2019.01.033.
2
svist4get: a simple visualization tool for genomic tracks from sequencing experiments.
BMC Bioinformatics. 2019 Mar 6;20(1):113. doi: 10.1186/s12859-019-2706-8.
3
Translatome and transcriptome analysis of TMA20 (MCT-1) and TMA64 (eIF2D) knockout yeast strains.
Data Brief. 2019 Feb 2;23:103701. doi: 10.1016/j.dib.2019.103701. eCollection 2019 Apr.
4
Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR Recycle Post-termination 40S Subunits In Vivo.
Mol Cell. 2018 Sep 6;71(5):761-774.e5. doi: 10.1016/j.molcel.2018.07.028. Epub 2018 Aug 23.
5
Ribosome Profiling: Global Views of Translation.
Cold Spring Harb Perspect Biol. 2019 May 1;11(5):a032698. doi: 10.1101/cshperspect.a032698.
6
Genome-wide SWAp-Tag yeast libraries for proteome exploration.
Nat Methods. 2018 Aug;15(8):617-622. doi: 10.1038/s41592-018-0044-9. Epub 2018 Jul 9.
7
Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis.
Cell. 2018 Feb 22;172(5):910-923.e16. doi: 10.1016/j.cell.2018.01.035.
8
Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation.
Mol Cell. 2017 Dec 7;68(5):978-992.e4. doi: 10.1016/j.molcel.2017.11.002. Epub 2017 Nov 30.
9
Ensembl 2018.
Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. doi: 10.1093/nar/gkx1098.
10
Comparative analysis of alternative polyadenylation in and .
Genome Res. 2017 Oct;27(10):1685-1695. doi: 10.1101/gr.222331.117. Epub 2017 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验