Department of Biotechnology, College of Horticulture, Dr Y S Parmar University of Horticulture and Forestry, Solan, HP, 173230, India.
Department of Biotechnology, College of Horticulture, Dr Y S Parmar University of Horticulture and Forestry, Solan, HP, 173230, India.
Microbiol Res. 2021 Dec;253:126878. doi: 10.1016/j.micres.2021.126878. Epub 2021 Sep 24.
Premature leaf fall of apple caused by Marssonina coronaria is economically very important apple disease and all the commercially available apple cultivars are susceptible to this disease. The non-availability of an efficient transformation system for this fungus hinders the functional genomics research. Herein, we report for the first time, the successful Agrobacterium-mediated transformation in apple leaf blotch fungus M. coronaria by transferring T-DNA harbouring the genes for hygromycin phosphotransferase (hpt), β-glucuronidase (uidA) and green fluorescent protein (gfp) under the control of CaMV 35S promoter. The key factors that affect the transformation efficiency including type of recipient fungal material, acetosyringone concentration, the conditions for co-cultivation, Agrobacterium concentration, Agrobacterium strains and membrane types as support were investigated. The present results have recommended that 250 μM concentration of acetosyringone, 24 °C temperature and 48 h time, 0.5 OD of A. tumefaciens, EHA105 Agrobacterium strain and Whatman filter paper were the optimal co-cultivation conditions for the transformation of M. coronaria by using fragmented mycelia suspension and mycelial plugs. We observed that conidia were tedious to transform as compared to the fragmented mycelia and mycelial plugs of this slow growing fungus. These optimized parameters yielded 54 and 70 average transformants per 60 mycelial plugs and 10 fragmented mycelia, respectively. Fungal transformants were analysed for T-DNA integration, gus gene expression and gfp gene expression. Strong gus histochemical staining and green fluorescence expression indicated that the CaMV 35S promoter can drive gene expression in M. croronaria. Some mutants showed difference in the morphology of the colony as compared to the wild type control. This report will be very useful to inspect molecular basis of apple-M. coronaria interactions by deciphering the functional roles of various genes in this pathogenic fungus.
苹果褐斑病是一种由苹果尾孢菌引起的苹果病害,它会导致苹果过早落叶,给苹果产业造成了严重的经济损失。所有商业上可用的苹果品种都容易感染这种病害。由于该真菌缺乏有效的转化系统,因此阻碍了其功能基因组学研究。在此,我们首次报道了在苹果叶斑病菌中成功地进行了农杆菌介导的转化,将携带潮霉素磷酸转移酶(hpt)、β-葡萄糖醛酸酶(uidA)和绿色荧光蛋白(gfp)基因的 T-DNA 转入到该真菌中,该基因在 CaMV 35S 启动子的控制下表达。我们还研究了影响转化效率的关键因素,包括受体真菌材料的类型、乙酰丁香酮的浓度、共培养条件、农杆菌浓度、农杆菌菌株和膜类型等。结果表明,在使用菌丝碎片悬浮液和菌丝塞作为转化受体时,最佳的共培养条件为乙酰丁香酮浓度 250 μM、温度 24°C、时间 48 h、A. tumefaciens 的 OD 值为 0.5、使用 EHA105 农杆菌菌株和 Whatman 滤纸。与该缓慢生长真菌的菌丝碎片和菌丝塞相比,我们发现分生孢子较难转化。这些优化的参数分别使每 60 个菌丝塞和 10 个菌丝碎片获得 54 个和 70 个平均转化体。我们对真菌转化体进行了 T-DNA 整合、gus 基因表达和 gfp 基因表达分析。gus 组织化学染色和绿色荧光表达均表明 CaMV 35S 启动子可以在 M. croronaria 中驱动基因表达。与野生型对照相比,一些突变体的菌落形态存在差异。本报告将有助于通过解析该病原菌中各种基因的功能,研究苹果与 M. coronaria 相互作用的分子基础。