UMR Inserm 1256 N-GERE (Nutrition, Génetique et Exposition aux Risques Environmentaux), Université de Lorraine, Vandoeuvre-lès-Nancy, France.
Departments of Digestive Diseases and Molecular Medicine and National Center of Inborn Errors of Metabolism, University Hospital Center, Université de Lorraine, Vandoeuvre-lès-Nancy, France.
Crit Rev Biochem Mol Biol. 2022 Apr;57(2):133-155. doi: 10.1080/10409238.2021.1979459. Epub 2021 Oct 5.
Methyl-Cobalamin (Cbl) derives from dietary vitamin B and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including . Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC1), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.
甲钴胺(Cbl)来源于饮食中的维生素 B,并作为哺乳动物蛋氨酸合成酶(MS)的辅助因子发挥作用。MS 由 编码,催化同型半胱氨酸向蛋氨酸和四氢叶酸的再甲基化,分别为蛋氨酸和细胞质叶酸循环提供燃料。蛋氨酸是 S-腺苷甲硫氨酸(SAM)的前体,是转甲基反应的通用甲基供体。MS 活性受损是由于饮食中摄入不足或 B 吸收不良以及钴胺代谢的先天性错误(IECM)所致。导致 MS 活性受损临床表现高度多变的机制经典上被认为是叶酸循环及其相关嘌呤和嘧啶合成以及内源性蛋氨酸和 SAM 合成减少的结果。在过去十年中,关于 B 缺乏和 IECM 的细胞和动物模型的数据强调了其他关键的病理机制,包括 MS 与蛋氨酸合成酶还原酶、MMACHC 和 MMADHC 的互作组改变、内质网应激、细胞信号改变以及基因组/表观基因组失调。MS 活性降低会增加催化蛋白磷酸酶 2A(PP2A)的活性,并导致核质 RNA 结合蛋白的磷酸化/甲基化失衡,包括 ELAVL1/HuR 蛋白,随后导致 mRNAs 核内隔离和基因表达的显著改变,包括 。SAM 和 SIRT1 活性降低通过 SIRT1 对 HSF1 的去乙酰化作用受损和过氧化物酶体增殖物激活受体-γ共激活因子-1(PGC1)的低甲基化/高乙酰化诱导内质网应激,使核受体失活,导致能量代谢和神经可塑性受损。SIRT1 激动剂对这些病理机制的逆转为治疗对常规补充治疗有抗性的 IECM 结果提供了有希望的前景。
Crit Rev Biochem Mol Biol. 2022-4
Cell Death Dis. 2013-3-21
J Inherit Metab Dis. 2019-1-28
Biochim Biophys Acta Mol Basis Dis. 2016-10-19
Int J Mol Sci. 2025-5-26
Commun Med (Lond). 2024-12-30
Int J Mol Sci. 2024-7-23
Biol Trace Elem Res. 2025-3