Suppr超能文献

基于图像的高通量表型分析在作物中的资源利用和数据共享挑战。

Resources for image-based high-throughput phenotyping in crops and data sharing challenges.

机构信息

School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia 6009, Australia.

Department of Computer Science and Software Engineering, University of Western Australia, Perth, Western Australia 6009, Australia.

出版信息

Plant Physiol. 2021 Oct 5;187(2):699-715. doi: 10.1093/plphys/kiab301.

Abstract

High-throughput phenotyping (HTP) platforms are capable of monitoring the phenotypic variation of plants through multiple types of sensors, such as red green and blue (RGB) cameras, hyperspectral sensors, and computed tomography, which can be associated with environmental and genotypic data. Because of the wide range of information provided, HTP datasets represent a valuable asset to characterize crop phenotypes. As HTP becomes widely employed with more tools and data being released, it is important that researchers are aware of these resources and how they can be applied to accelerate crop improvement. Researchers may exploit these datasets either for phenotype comparison or employ them as a benchmark to assess tool performance and to support the development of tools that are better at generalizing between different crops and environments. In this review, we describe the use of image-based HTP for yield prediction, root phenotyping, development of climate-resilient crops, detecting pathogen and pest infestation, and quantitative trait measurement. We emphasize the need for researchers to share phenotypic data, and offer a comprehensive list of available datasets to assist crop breeders and tool developers to leverage these resources in order to accelerate crop breeding.

摘要

高通量表型分析(HTP)平台能够通过多种类型的传感器监测植物的表型变化,例如红绿蓝(RGB)相机、高光谱传感器和计算机断层扫描,这些传感器可以与环境和基因型数据相关联。由于提供了广泛的信息,HTP 数据集代表了一种有价值的资源,可以用于描述作物表型。随着 HTP 的广泛应用以及更多工具和数据的发布,研究人员了解这些资源及其如何应用于加速作物改良非常重要。研究人员可以利用这些数据集进行表型比较,也可以将其用作基准来评估工具性能,并支持开发能够更好地在不同作物和环境之间进行泛化的工具。在这篇综述中,我们描述了基于图像的 HTP 在产量预测、根系表型分析、抗气候作物的开发、病原体和害虫侵染的检测以及数量性状测量方面的应用。我们强调了研究人员共享表型数据的必要性,并提供了可用数据集的综合列表,以帮助作物培育者和工具开发人员利用这些资源加速作物培育。

相似文献

4
Translating High-Throughput Phenotyping into Genetic Gain.高通量表型分析转化为遗传增益。
Trends Plant Sci. 2018 May;23(5):451-466. doi: 10.1016/j.tplants.2018.02.001. Epub 2018 Mar 16.
7
Breeder friendly phenotyping.繁殖友好表型鉴定。
Plant Sci. 2020 Jun;295:110396. doi: 10.1016/j.plantsci.2019.110396. Epub 2020 Jan 18.

引用本文的文献

2
Epistasis and pleiotropy-induced variation for plant breeding.上位性和多效性引起的植物育种变异。
Plant Biotechnol J. 2024 Oct;22(10):2788-2807. doi: 10.1111/pbi.14405. Epub 2024 Jun 14.

本文引用的文献

4
Indian major basmati paddy seed varieties images dataset.印度主要巴斯马蒂水稻种子品种图像数据集。
Data Brief. 2020 Oct 28;33:106460. doi: 10.1016/j.dib.2020.106460. eCollection 2020 Dec.
5
Dataset of leaf inclination angles for 71 different species.71个不同物种的叶片倾角数据集。
Data Brief. 2020 Oct 9;33:106391. doi: 10.1016/j.dib.2020.106391. eCollection 2020 Dec.
7
The future of digital health with federated learning.联合学习助力数字健康的未来。
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.
9
A dataset of necrotized cassava root cross-section images.木薯根坏死横截面图像数据集。
Data Brief. 2020 Aug 12;32:106170. doi: 10.1016/j.dib.2020.106170. eCollection 2020 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验