Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
Radiation-Oncology Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Med Phys. 2021 Nov;48(11):7534-7540. doi: 10.1002/mp.15267. Epub 2021 Oct 22.
To derive the isodose line R relative to the prescription dose below which irradiated normal tissue (NT) regions benefit from a hypofractionated schedule with an isoeffective dose to the tumor. To apply the formalism to clinical case examples.
From the standard biologically effective dose (BED) equation based on the linear-quadratic (LQ) model, the BED of an NT that receives a relative proportion r of the prescribed dose per fraction for a given α/β-ratio of the tumor, (α/β) , and NT, (α/β) , is derived for different treatment schedules while keeping the BED to the tumor constant. Based on this, the "break-even" isodose line R is then derived. The BED of NT regions that receive doses below R decreases for more hypofractionated treatment schedules, and hence a lower risk for NT injury is predicted in these regions. To assess the impact of a linear behavior of BED for high doses per fraction (>6 Gy), we evaluated BED also using the LQ-linear (LQ-L) model.
The formalism provides the equations to derive the BED of an NT as function of dose per fraction for an isoeffective dose to the tumor and the corresponding break-even isodose line R. For generic α/β-ratios of (α/β) = 10 Gy and (α/β) = 3 Gy and homogeneous dose in the target, R is 30%. R is doubling for stereotactic treatments for which tumor control correlates with the maximum dose of 100% instead of the encompassing isodose line of 50%. When using the LQ-L model, the notion of a break-even dose level R remains valid up to about 20 Gy per fraction for generic α/β-ratios and .
The formalism may be used to estimate below which relative isodose line R there will be a differential sparing of NT when increasing hypofractionation. More generally, it allows to assess changes of the therapeutic index for sets of isoeffective treatment schedules at different relative dose levels compared to a reference schedule in a compact manner.
推导出相对于处方剂量的等剂量线 R,在该等剂量线下,接受分次剂量低于处方剂量的一定比例 r 的正常组织(NT)区域将从肿瘤等效剂量的亚分次治疗方案中获益。将该形式应用于临床病例示例。
从基于线性二次(LQ)模型的标准生物有效剂量(BED)方程出发,对于给定的肿瘤和 NT 的α/β比值(α/β)和(α/β),推导了在保持肿瘤 BED 不变的情况下,NT 接受相对比例 r 的每分次剂量的不同治疗方案的 NT 的 BED。基于此,推导出“平衡”等剂量线 R。对于更多的亚分次治疗方案,接受剂量低于 R 的 NT 区域的 BED 降低,因此预计这些区域的 NT 损伤风险较低。为了评估高剂量(>6 Gy)下 BED 的线性行为的影响,我们还使用 LQ-线性(LQ-L)模型评估了 BED。
该形式提供了将 NT 的 BED 作为等效肿瘤剂量的函数推导的方程,以及相应的平衡等剂量线 R。对于通用的α/β比值(α/β)= 10 Gy 和(α/β)= 3 Gy 以及靶区均匀剂量,R 为 30%。对于立体定向治疗,当肿瘤控制与 100%的最大剂量相关,而不是与 50%的包络等剂量线相关时,R 会翻倍。当使用 LQ-L 模型时,在通用的α/β 比值和下,R 处的平衡剂量水平概念仍然有效,直到每分次约 20 Gy。
该形式可用于估计当增加亚分次时,在哪个相对等剂量线 R 以下 NT 将获得不同程度的保护。更一般地,它允许以紧凑的方式评估与参考方案相比,在不同的相对剂量水平下的等效治疗方案集的治疗指数变化。