Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
Med Phys. 2022 Dec;49(12):7672-7682. doi: 10.1002/mp.15911. Epub 2022 Aug 19.
Normal tissue (NT) sparing by ultra-high dose rate (UHDR) irradiations compared to conventional dose rate (CONV) irradiations while being isotoxic to the tumor has been termed "FLASH effect" and has been observed when large doses per fraction (d ≳ 5 Gy) have been delivered. Since hypofractionated treatment schedules are known to increase toxicities of late-reacting tissues compared to normofractionated schedules for many clinical scenarios at CONV dose rates, we developed a formalism based on the biologically effective dose (BED) to assess the minimum magnitude of the FLASH effect needed to compensate the loss of late-reacting NT sparing when reducing the number of fractions compared to a normofractionated CONV treatment schedule while remaining isoeffective to the tumor.
By requiring the same BED for the tumor, we derived the "break-even NT sparing weighting factor" W for the linear-quadratic (LQ) and LQ-linear (LQ-L) models for an NT region irradiated at a relative dose r (relative to the prescribed dose per fraction d to the tumor). W was evaluated numerically for multiple values of d and r, and for different tumor and NT α/β-ratios. W was compared against currently available experimental data on the magnitude of the NT sparing provided by the FLASH effect for single fraction doses.
For many clinically relevant scenarios, W decreases steeply initially for d > 2 Gy for late-reacting tissues with (α/β) ≈ 3 Gy, implying that a significant NT sparing by the FLASH effect (between 15% and 30%) is required to counteract the increased radiobiological damage experienced by late-reacting NT for hypofractionated treatments with d < 10 Gy compared to normofractionated treatments that are equieffective to the tumor. When using the LQ model with generic α/β-ratios for tumor and late-reacting NT of (α/β) = 10 Gy and (α/β) = 3 Gy, respectively, most currently available experimental evidence about the magnitude of NT sparing by the FLASH effect suggests no net NT sparing benefit for hypofractionated FLASH radiotherapy (RT) in the high-dose region when compared with W . Instead, clinical indications with more similar α/β-ratios of the tumor and dose-limiting NT toxicities [i.e., (α/β) ≈ (α/β) ], such as prostate treatments, are generally less penalized by hypofractionated treatments and need consequently smaller magnitudes of NT sparing by the FLASH effect to achieve a net benefit. For strongly hypofractionated treatments (>10-15 Gy/fraction), the LQ-L model predicts, unlike the LQ model, a larger W suggesting a possible benefit of strongly hypofractionated FLASH RT, even for generic α/β-ratios of (α/β) = 10 Gy and (α/β) = 3 Gy. However, knowledge on the isoeffect scaling for high doses per fraction (≳10 Gy/fraction) and its modeling is currently limited and impedes accurate and reliable predictions for such strongly hypofractionated treatments.
We developed a formalism that quantifies the minimal NT sparing by the FLASH effect needed to compensate for hypofractionation, based on the LQ and LQ-L models. For a given hypofractionated UHDR treatment scenario and magnitude of the FLASH effect, the formalism predicts if a net NT sparing benefit is expected compared to a respective normofractionated CONV treatment.
与常规剂量率(CONV)照射相比,超高剂量率(UHDR)照射在对肿瘤等毒时的情况下对正常组织(NT)的保护作用被称为“FLASH 效应”,当每部分剂量较大(d ≳ 5Gy)时观察到这种效应。由于在 CONV 剂量率下,与常规分次相比,分次治疗方案已知会增加晚期反应组织的毒性,因此我们开发了一种基于生物有效剂量(BED)的形式主义来评估当与常规分次 CONV 治疗相比减少分次数量时,需要 FLASH 效应产生多大程度的最小晚期反应 NT 保护作用,同时保持对肿瘤的等效性。
通过要求肿瘤的相同 BED,我们为在相对剂量 r 下照射的 NT 区域推导了线性二次(LQ)和 LQ-线性(LQ-L)模型的“平衡 NT 保护加权因子”W(相对于肿瘤的每部分规定剂量 d)。对于多种 d 和 r 值以及不同的肿瘤和 NT α/β 比值,我们通过数值方法评估了 W。W 与目前关于单次剂量的 FLASH 效应提供的 NT 保护程度的可用实验数据进行了比较。
对于许多临床相关情况,对于晚期反应组织(α/β)≈3Gy 的 d>2Gy,W 最初急剧下降,这意味着对于与肿瘤等效的分次治疗,需要显著的 NT 由 FLASH 效应提供的保护作用(15%至 30%),以抵消低剂量(d <10Gy)治疗中晚期 NT 经历的增加的放射生物学损伤。当使用具有肿瘤和晚期反应 NT 的通用 α/β 比值(α/β)=10Gy 和(α/β)=3Gy 的 LQ 模型时,大多数目前关于 FLASH 放射治疗(RT)的 NT 保护程度的实验证据表明,与 W 相比,对于高剂量区域的分次 FLASH RT 没有净 NT 保护作用。相反,具有更相似的肿瘤和剂量限制 NT 毒性的 α/β 比值的临床指征[即(α/β)≈(α/β)],例如前列腺治疗,通常受分次治疗的惩罚较小,因此需要较小的 NT 保护作用由 FLASH 效应来实现净效益。对于强烈的分次治疗(>10-15Gy/部分),与 LQ 模型不同,LQ-L 模型预测会产生更大的 W,这表明强烈的分次 FLASH RT 可能具有潜在的益处,即使对于通用的α/β 比值(α/β)=10Gy 和(α/β)=3Gy。然而,目前对高剂量/部分(≳10Gy/部分)的等效应缩放及其建模的了解有限,这阻碍了对这种强烈的分次治疗的准确和可靠预测。
我们开发了一种形式主义,根据 LQ 和 LQ-L 模型,量化了 FLASH 效应在补偿分次治疗时所需的最小 NT 保护作用。对于给定的分次 UHDR 治疗方案和 FLASH 效应的幅度,该形式主义预测与相应的常规分次 CONV 治疗相比是否预计会产生净 NT 保护作用。