Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.
J Phys Chem B. 2021 Oct 14;125(40):11179-11187. doi: 10.1021/acs.jpcb.1c05915. Epub 2021 Oct 5.
Biochemical circadian rhythm oscillations play an important role in many signaling mechanisms. In this work, we explore some of the biophysical mechanisms responsible for sustaining robust oscillations by constructing a minimal but analytically tractable model of the circadian oscillations in the KaiABC protein system found in the cyanobacteria . In particular, our minimal model explicitly accounts for two experimentally characterized biophysical features of the KaiABC protein system, namely, a differential binding affinity and an ultrasensitive response. Our analytical work shows how these mechanisms might be crucial for promoting robust oscillations even in suboptimal nutrient conditions. Our analytical and numerical work also identifies mechanisms by which biological clocks can stably maintain a constant time period under a variety of nutrient conditions. Finally, our work also explores the thermodynamic costs associated with the generation of robust sustained oscillations and shows that the net rate of entropy production alone might not be a good figure of merit to asses the quality of oscillations.
生物化学的昼夜节律震荡在许多信号机制中起着重要作用。在这项工作中,我们通过构建一个在蓝细菌中发现的 KaiABC 蛋白系统的昼夜震荡的最小但可分析的模型,探索了一些维持强健震荡的生物物理机制。具体来说,我们的最小模型明确考虑了 KaiABC 蛋白系统的两个经过实验表征的生物物理特征,即差异结合亲和力和超敏反应。我们的分析工作表明,这些机制对于在营养条件不佳的情况下促进强健的震荡可能是至关重要的。我们的分析和数值工作还确定了生物钟在各种营养条件下如何稳定地维持恒定的时间周期的机制。最后,我们的工作还探讨了生成强健持续震荡所涉及的热力学成本,并表明熵产生的净速率本身可能不是评估震荡质量的一个很好的指标。