Department of Physics, Yale University, New Haven, CT, 06511, USA.
Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
Nat Commun. 2021 Jan 15;12(1):392. doi: 10.1038/s41467-020-20281-2.
Living and non-living active matter consumes energy at the microscopic scale to drive emergent, macroscopic behavior including traveling waves and coherent oscillations. Recent work has characterized non-equilibrium systems by their total energy dissipation, but little has been said about how dissipation manifests in distinct spatiotemporal patterns. We introduce a measure of irreversibility we term the entropy production factor to quantify how time reversal symmetry is broken in field theories across scales. We use this scalar, dimensionless function to characterize a dynamical phase transition in simulations of the Brusselator, a prototypical biochemically motivated non-linear oscillator. We measure the total energetic cost of establishing synchronized biochemical oscillations while simultaneously quantifying the distribution of irreversibility across spatiotemporal frequencies.
活物质和非活物质在微观尺度上消耗能量,以驱动包括传播波和相干振荡在内的宏观涌现行为。最近的研究通过系统的总能量耗散来描述非平衡系统,但很少有研究说明耗散如何在不同的时空模式中表现出来。我们引入了一种不可逆性的度量,称为熵产生因子,以量化在不同尺度的场论中时间反转对称性是如何被打破的。我们使用这个标量、无量纲函数来描述布鲁塞尔振子(一种典型的生物化学动机非线性振荡器)模拟中的动力学相变。我们测量建立同步生物化学振荡的总能量成本,同时量化不可逆性在时空频率上的分布。