Suppr超能文献

量子启发式磁哈密顿蒙特卡罗。

Quantum-Inspired Magnetic Hamiltonian Monte Carlo.

机构信息

School of Electrical Engineering, University of Johannesburg, Johannesburg, South Africa.

School of Statistics and Actuarial Science, University of Witwatersrand, Johannesburg, South Africa.

出版信息

PLoS One. 2021 Oct 5;16(10):e0258277. doi: 10.1371/journal.pone.0258277. eCollection 2021.

Abstract

Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo algorithm that is able to generate distant proposals via the use of Hamiltonian dynamics, which are able to incorporate first-order gradient information about the target posterior. This has driven its rise in popularity in the machine learning community in recent times. It has been shown that making use of the energy-time uncertainty relation from quantum mechanics, one can devise an extension to HMC by allowing the mass matrix to be random with a probability distribution instead of a fixed mass. Furthermore, Magnetic Hamiltonian Monte Carlo (MHMC) has been recently proposed as an extension to HMC and adds a magnetic field to HMC which results in non-canonical dynamics associated with the movement of a particle under a magnetic field. In this work, we utilise the non-canonical dynamics of MHMC while allowing the mass matrix to be random to create the Quantum-Inspired Magnetic Hamiltonian Monte Carlo (QIMHMC) algorithm, which is shown to converge to the correct steady state distribution. Empirical results on a broad class of target posterior distributions show that the proposed method produces better sampling performance than HMC, MHMC and HMC with a random mass matrix.

摘要

哈密顿蒙特卡罗(Hamiltonian Monte Carlo,简称 HMC)是一种马尔可夫链蒙特卡罗算法,能够通过使用哈密顿动力学生成远距离提案,从而能够整合关于目标后验的一阶梯度信息。这使得它在机器学习社区中的受欢迎程度最近有所上升。已经表明,通过利用来自量子力学的能量-时间不确定性关系,可以通过允许质量矩阵随概率分布而不是固定质量而成为随机的,对 HMC 进行扩展。此外,最近提出了磁性哈密顿蒙特卡罗(Magnetic Hamiltonian Monte Carlo,简称 MHMC)作为 HMC 的扩展,并向 HMC 添加了磁场,从而导致与磁场下粒子运动相关的非正则动力学。在这项工作中,我们利用 MHMC 的非正则动力学,同时允许质量矩阵随机化,以创建量子启发式磁性哈密顿蒙特卡罗(Quantum-Inspired Magnetic Hamiltonian Monte Carlo,简称 QIMHMC)算法,结果表明该算法能够收敛到正确的稳态分布。对广泛的目标后验分布的实证结果表明,与 HMC、MHMC 和具有随机质量矩阵的 HMC 相比,所提出的方法产生了更好的采样性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fd/8491946/b76eed71a724/pone.0258277.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验