Suppr超能文献

预后方法的基准测试——以伴有潜在原发性癌症的患者为例。

Benchmarking prognosis methods for survivability - A case study for patients with contingent primary cancers.

机构信息

Faculty of Commerce and Management, Prince of Songkla University, Trang, Thailand.

Department of Industrial Management National Taiwan University of Science and Technology, Taipei, 106, ROC, Taiwan.

出版信息

Comput Biol Med. 2021 Nov;138:104888. doi: 10.1016/j.compbiomed.2021.104888. Epub 2021 Sep 23.

Abstract

BACKGROUND

There is an increasing number of patients with a first primary cancer who are diagnosed with a second primary cancer, but prognosis methods to predict the survivability of a patient with multiple primary cancers have not been fully benchmarked.

METHODS

This study investigated the five-year survivability prognosis performances of six machine learning approaches. These approaches are: artificial neural network, decision tree (DT), logistic regression, support vector machine, naïve Bayes (NB), and Bayesian network (BN). A synthetic minority over-sampling technique (SMOTE) was used to solve the imbalanced problem, and a nationwide cancer patient database containing 7,845 subjects in Taiwan was used as a sample source. Ten primary and secondary cancers and their key variables affecting the survivability of the patients were identified.

RESULTS

All the models using SMOTE improved sensitivity and specificity significantly. NB has the highest performance in terms of accuracy and specificity, whereas BN has the highest performance in terms of sensitivity. Further, the computational time and the power of knowledge representation of NB, BN, and DT outperformed the others.

CONCLUSIONS

Selecting the appropriate prognosis models to predict survivability of patients with two contingent primary cancers can aid precise prediction and can support appropriate treatment advice.

摘要

背景

越来越多的首次原发性癌症患者被诊断出患有第二种原发性癌症,但尚未充分评估预测多发性原发性癌症患者生存能力的预后方法。

方法

本研究调查了六种机器学习方法的五年生存率预后性能。这些方法是:人工神经网络、决策树(DT)、逻辑回归、支持向量机、朴素贝叶斯(NB)和贝叶斯网络(BN)。使用合成少数过采样技术(SMOTE)解决了不平衡问题,使用包含台湾 7845 名患者的全国性癌症患者数据库作为样本来源。确定了十种原发性和继发性癌症及其影响患者生存能力的关键变量。

结果

所有使用 SMOTE 的模型均显著提高了敏感性和特异性。NB 在准确性和特异性方面表现最佳,而 BN 在敏感性方面表现最佳。此外,NB、BN 和 DT 在计算时间和知识表示能力方面表现优于其他方法。

结论

选择合适的预后模型来预测两种继发性原发性癌症患者的生存能力,可以辅助进行精确的预测,并提供适当的治疗建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验