Suppr超能文献

用于交通事故热点识别和预测的空间统计与随机森林方法

Spatial statistics and random forest approaches for traffic crash hot spot identification and prediction.

作者信息

Atumo Eskindir Ayele, Fang Tuo, Jiang Xinguo

机构信息

School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, China.

Dire Dawa Institute of Technology, Dire Dawa University, Dire Dawa, Ethiopia.

出版信息

Int J Inj Contr Saf Promot. 2022 Jun;29(2):207-216. doi: 10.1080/17457300.2021.1983844. Epub 2021 Oct 6.

Abstract

Crash hot spot identification and prediction using spatial statistics and random forest methods on the interstate of Michigan are evaluated. The Getis-Ord statistics are adopted to identify hot spots using location, frequency, and equivalent property damage only weights computed from the cost and severity of crashes. In the random forest approach, data patterns between 2010 and 2017 are determined to predict hot spots of crashes in 2018. Accordingly, the results indicate that: (i) interstate routes have witnessed 13,089 crashes on significant hot spots, 7,413 on cold spots, and the rest in other locations; (ii) random forest shows 76.7% and 74% accuracy for validation and prediction, respectively. The performance of the model is further affirmed with precision, recall, and F-scores of 75%, 74%, and 70%, respectively; and (iii) clustering of the crashes exhibits spatial dependence of high and low equivalent property damage only crashes. The practical significance of the approach is highlighted in the identification and prediction of hot spots.

摘要

对使用空间统计和随机森林方法在密歇根州州际公路上进行碰撞热点识别与预测进行了评估。采用Getis-Ord统计量,仅使用根据碰撞成本和严重程度计算出的位置、频率和等效财产损失权重来识别热点。在随机森林方法中,确定2010年至2017年的数据模式以预测2018年的碰撞热点。相应地,结果表明:(i)州际公路在显著热点发生了13089起碰撞,在冷点发生了7413起,其余发生在其他位置;(ii)随机森林在验证和预测方面的准确率分别为76.7%和74%。该模型的性能通过精确率、召回率和F值分别为75%、74%和70%得到进一步确认;(iii)碰撞的聚类显示了仅等效财产损失高低碰撞的空间依赖性。该方法在热点识别与预测中的实际意义得到了凸显。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验