Suppr超能文献

利用机器学习算法基于卢旺达道路交通事故数据优化救护车位置

Optimizing ambulance location based on road accident data in Rwanda using machine learning algorithms.

作者信息

Bahati Gatembo, Masabo Emmanuel

机构信息

African Center of Excellence in Data Science (ACE-DS), College of Business and Economics, University of Rwanda, 4285, Kigali, Rwanda.

African Center of Excellence in the Internet of Things, University of Rwanda, 3900, Kigali, Rwanda.

出版信息

Int J Health Geogr. 2025 Aug 27;24(1):23. doi: 10.1186/s12942-025-00400-2.

Abstract

BACKGROUND

The optimal placement of ambulances is critical for ensuring timely emergency medical responses, especially in regions with high accident frequencies. In Rwanda, where road accidents are a leading cause of injury and death, the strategic positioning of ambulances can significantly reduce response times and improve survival rates. The national records of Rwanda reveal a rising trend in the number of road accidents and deaths. In 2020, there were 4203 road traffic crashes throughout Rwanda with 687 deaths, data from 2021 demonstrated 8639 road traffic crashes with 655 deaths. Then in 2022 national statistics indicated 10,334 crushes with 729 deaths. The study used emergency response and road accident data collected by Rwanda Biomedical Centre in two fiscal years 2021-2022 and 2022-2023 consolidated with the administrative boundary of Rwandan sectors (shapefiles).

METHODS

The main objective was to optimize ambulance locations based on road accident data using machine learning algorithms. The methodology of this study used the random forest model to predict emergency response time and k-means clustering combined with linear programming to identify optimal hotspots for ambulance locations in Rwanda.

RESULTS

Random forest yields an accuracy of 94.3%, and positively classified emergency response time as 926 fast and 908 slow. K-means clustering combined with an optimization technique has grouped accident locations into two clusters and identified 58 optimal hotspots (stations) for ambulance locations in different regions of Rwanda with an average distance of 1092.773 m of ambulance station to the nearest accident location.

CONCLUSION

Machine learning may identify hidden information that standard statistical approaches cannot, the developed model for random forest and k-means clustering combined with linear programming reveals a strong performance for optimizing ambulance location using road accident data.

摘要

背景

救护车的最佳布局对于确保及时的紧急医疗响应至关重要,尤其是在事故频发地区。在卢旺达,道路交通事故是受伤和死亡的主要原因,救护车的战略布局可显著缩短响应时间并提高存活率。卢旺达的国家记录显示道路事故和死亡人数呈上升趋势。2020年,卢旺达全国共发生4203起道路交通事故,造成687人死亡;2021年的数据显示有8639起道路交通事故,655人死亡。然后在2022年,国家统计数据表明有10334起事故,729人死亡。该研究使用了卢旺达生物医学中心在2021 - 2022年和2022 - 2023年两个财政年度收集的应急响应和道路事故数据,并与卢旺达各部门的行政边界(shapefile格式)进行了整合。

方法

主要目标是使用机器学习算法根据道路事故数据优化救护车位置。本研究的方法使用随机森林模型预测应急响应时间,并结合k均值聚类和线性规划来确定卢旺达救护车位置的最佳热点区域。

结果

随机森林的准确率为94.3%,将应急响应时间正确分类为926次快速响应和908次慢速响应。k均值聚类与优化技术相结合,将事故地点分为两类,并确定了卢旺达不同地区5个救护车位置的最佳热点区域(站点),救护车站点到最近事故地点的平均距离为1092.773米。

结论

机器学习可能会识别出标准统计方法无法发现的隐藏信息,所开发的随机森林和k均值聚类结合线性规划的模型在使用道路事故数据优化救护车位置方面表现出强大性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验