Suppr超能文献

退化环境下的时空连续手势识别:3D积分成像(InIm)与RGB-D传感器的性能比较

Spatio-temporal continuous gesture recognition under degraded environments: performance comparison between 3D integral imaging (InIm) and RGB-D sensors.

作者信息

Krishnan Gokul, Huang Yinuo, Joshi Rakesh, O'Connor Timothy, Javidi Bahram

出版信息

Opt Express. 2021 Sep 13;29(19):30937-30951. doi: 10.1364/OE.438110.

Abstract

In this paper, we introduce a deep learning-based spatio-temporal continuous human gesture recognition algorithm under degraded conditions using three-dimensional (3D) integral imaging. The proposed system is shown as an efficient continuous human gesture recognition system for degraded environments such as partial occlusion. In addition, we compare the performance between the 3D integral imaging-based sensing and RGB-D sensing for continuous gesture recognition under degraded environments. Captured 3D data serves as the input to a You Look Only Once (YOLOv2) neural network for hand detection. Then, a temporal segmentation algorithm is employed to segment the individual gestures from a continuous video sequence. Following segmentation, the output is fed to a convolutional neural network-based bidirectional long short-term memory network (CNN-BiLSTM) for gesture classification. Our experimental results suggest that the proposed deep learning-based spatio-temporal continuous human gesture recognition provides substantial improvement over both RGB-D sensing and conventional 2D imaging system. To the best of our knowledge, this is the first report of 3D integral imaging-based continuous human gesture recognition with deep learning and the first comparison between 3D integral imaging and RGB-D sensors for this task.

摘要

在本文中,我们介绍了一种基于深度学习的时空连续人体手势识别算法,该算法在退化条件下使用三维(3D)积分成像。所提出的系统被证明是一种适用于部分遮挡等退化环境的高效连续人体手势识别系统。此外,我们比较了在退化环境下基于3D积分成像的传感和RGB-D传感在连续手势识别方面的性能。捕获的3D数据作为输入提供给用于手部检测的You Only Look Once(YOLOv2)神经网络。然后,采用时间分割算法从连续视频序列中分割出各个手势。分割之后,将输出输入到基于卷积神经网络的双向长短期记忆网络(CNN-BiLSTM)进行手势分类。我们的实验结果表明,所提出的基于深度学习的时空连续人体手势识别相比RGB-D传感和传统二维成像系统有显著改进。据我们所知,这是第一篇关于基于3D积分成像的深度学习连续人体手势识别的报告,也是第一篇关于3D积分成像和RGB-D传感器在此任务上的比较报告。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验