Suppr超能文献

基于多流时变特征增强方法的 sEMG 信号手势识别。

Hand gesture recognition using sEMG signals with a multi-stream time-varying feature enhancement approach.

机构信息

School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Fukushima, 965-0006, Japan.

出版信息

Sci Rep. 2024 Sep 27;14(1):22061. doi: 10.1038/s41598-024-72996-7.

Abstract

Hand gesture recognition based on sparse multichannel surface electromyography (sEMG) still poses a significant challenge to deployment as a muscle-computer interface. Many researchers have been working to develop an sEMG-based hand gesture recognition system. However, the existing system still faces challenges in achieving satisfactory performance due to ineffective feature enhancement, so the prediction is erratic and unstable. To comprehensively tackle these challenges, we introduce a novel approach: a lightweight sEMG-based hand gesture recognition system using a 4-stream deep learning architecture. Each stream strategically combines Temporal Convolutional Network (TCN)-based time-varying features with Convolutional Neural Network (CNN)-based frame-wise features. In the first stream, we harness the power of the TCN module to extract nuanced time-varying temporal features. The second stream integrates a hybrid Long short-term memory (LSTM)-TCN module. This stream extracts temporal features using LSTM and seamlessly enhances them with TCN to effectively capture intricate long-range temporal relations. The third stream adopts a spatio-temporal strategy, merging the CNN and TCN modules. This integration facilitates concurrent comprehension of both spatial and temporal features, enriching the model's understanding of the underlying dynamics of the data. The fourth stream uses a skip connection mechanism to alleviate potential problems of data loss, ensuring a robust information flow throughout the network and concatenating the 4 stream features, yielding a comprehensive and effective final feature representation. We employ a channel attention-based feature selection module to select the most effective features, aiming to reduce the computational complexity and feed them into the classification module. The proposed model achieves an average accuracy of 94.31% and 98.96% on the Ninapro DB1 and DB9 datasets, respectively. This high-performance accuracy proves the superiority of the proposed model, and its implications extend to enhancing the quality of life for individuals using prosthetic limbs and advancing control systems in the field of robotic human-machine interfaces.

摘要

基于稀疏多通道表面肌电信号(sEMG)的手势识别在作为肌电接口部署方面仍然具有挑战性。许多研究人员一直在努力开发基于 sEMG 的手势识别系统。然而,由于特征增强效果不佳,现有系统在性能方面仍面临挑战,因此预测结果不稳定。为了全面解决这些挑战,我们引入了一种新的方法:使用 4 流深度学习架构的轻量级基于 sEMG 的手势识别系统。每一流都策略性地结合基于时变特征的时间卷积网络(TCN)和基于帧的特征的卷积神经网络(CNN)。在第一流中,我们利用 TCN 模块的功能提取细微的时变时间特征。第二流集成了混合长短时记忆(LSTM)-TCN 模块。该流使用 LSTM 提取时间特征,并通过 TCN 对其进行无缝增强,以有效捕获复杂的长程时间关系。第三流采用时空策略,合并 CNN 和 TCN 模块。这种集成促进了对空间和时间特征的同时理解,丰富了模型对数据底层动态的理解。第四流使用跳过连接机制来缓解数据丢失的潜在问题,确保网络中稳健的信息流,并将 4 流特征串联起来,产生全面有效的最终特征表示。我们采用基于通道注意力的特征选择模块来选择最有效的特征,旨在降低计算复杂度,并将其输入分类模块。在 Ninapro DB1 和 DB9 数据集上,该模型的平均准确率分别达到 94.31%和 98.96%。这种高性能的准确率证明了所提出模型的优越性,其意义扩展到提高使用假肢的个人的生活质量,并推动机器人人机界面领域的控制系统的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0b9/11436881/1122b5c4b97b/41598_2024_72996_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验