Suppr超能文献

通过利用成对关系实现离散两步跨模态哈希。

Discrete Two-Step Cross-Modal Hashing through the Exploitation of Pairwise Relations.

机构信息

College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China.

School of Software, Shandong University, Jinan, China.

出版信息

Comput Intell Neurosci. 2021 Sep 27;2021:4846043. doi: 10.1155/2021/4846043. eCollection 2021.

Abstract

The cross-modal hashing method can map heterogeneous multimodal data into a compact binary code that preserves semantic similarity, which can significantly enhance the convenience of cross-modal retrieval. However, the currently available supervised cross-modal hashing methods generally only factorize the label matrix and do not fully exploit the supervised information. Furthermore, these methods often only use one-directional mapping, which results in an unstable hash learning process. To address these problems, we propose a new supervised cross-modal hash learning method called Discrete Two-step Cross-modal Hashing (DTCH) through the exploitation of pairwise relations. Specifically, this method fully exploits the pairwise similarity relations contained in the supervision information: for the label matrix, the hash learning process is stabilized by combining matrix factorization and label regression; for the pairwise similarity matrix, a semirelaxed and semidiscrete strategy is adopted to potentially reduce the cumulative quantization errors while improving the retrieval efficiency and accuracy. The approach further combines an exploration of fine-grained features in the objective function with a novel out-of-sample extension strategy to enable the implicit preservation of consistency between the different modal distributions of samples and the pairwise similarity relations. The superiority of our method was verified through extensive experiments using two widely used datasets.

摘要

跨模态哈希方法可以将异构多模态数据映射到紧凑的二进制代码中,同时保留语义相似性,这可以显著提高跨模态检索的便利性。然而,目前可用的监督跨模态哈希方法通常仅对标签矩阵进行因式分解,并未充分利用监督信息。此外,这些方法通常仅使用单向映射,这导致哈希学习过程不稳定。为了解决这些问题,我们通过利用成对关系提出了一种名为离散两步跨模态哈希(DTCH)的新的监督跨模态哈希学习方法。具体来说,该方法充分利用了监督信息中包含的成对相似关系:对于标签矩阵,通过矩阵分解和标签回归相结合来稳定哈希学习过程;对于成对相似矩阵,采用半松弛和半离散策略,在提高检索效率和准确性的同时,潜在地减少累积量化误差。该方法进一步在目标函数中探索细粒度特征,并采用新颖的样本外扩展策略,以实现样本的不同模态分布和成对相似关系之间的一致性的隐式保留。通过在两个广泛使用的数据集上进行的大量实验,验证了我们方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bac/8490049/c9a71a1e8d45/CIN2021-4846043.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验