Suppr超能文献

用于跨模态检索的非对称监督一致性和特异性哈希

Asymmetric Supervised Consistent and Specific Hashing for Cross-Modal Retrieval.

作者信息

Meng Min, Wang Haitao, Yu Jun, Chen Hui, Wu Jigang

出版信息

IEEE Trans Image Process. 2021;30:986-1000. doi: 10.1109/TIP.2020.3038365. Epub 2020 Dec 9.

Abstract

Hashing-based techniques have provided attractive solutions to cross-modal similarity search when addressing vast quantities of multimedia data. However, existing cross-modal hashing (CMH) methods face two critical limitations: 1) there is no previous work that simultaneously exploits the consistent or modality-specific information of multi-modal data; 2) the discriminative capabilities of pairwise similarity is usually neglected due to the computational cost and storage overhead. Moreover, to tackle the discrete constraints, relaxation-based strategy is typically adopted to relax the discrete problem to the continuous one, which severely suffers from large quantization errors and leads to sub-optimal solutions. To overcome the above limitations, in this article, we present a novel supervised CMH method, namely Asymmetric Supervised Consistent and Specific Hashing (ASCSH). Specifically, we explicitly decompose the mapping matrices into the consistent and modality-specific ones to sufficiently exploit the intrinsic correlation between different modalities. Meanwhile, a novel discrete asymmetric framework is proposed to fully explore the supervised information, in which the pairwise similarity and semantic labels are jointly formulated to guide the hash code learning process. Unlike existing asymmetric methods, the discrete asymmetric structure developed is capable of solving the binary constraint problem discretely and efficiently without any relaxation. To validate the effectiveness of the proposed approach, extensive experiments on three widely used datasets are conducted and encouraging results demonstrate the superiority of ASCSH over other state-of-the-art CMH methods.

摘要

基于哈希的技术在处理大量多媒体数据时,为跨模态相似性搜索提供了有吸引力的解决方案。然而,现有的跨模态哈希(CMH)方法面临两个关键限制:1)以前没有工作同时利用多模态数据的一致信息或特定模态信息;2)由于计算成本和存储开销,成对相似性的判别能力通常被忽略。此外,为了解决离散约束,通常采用基于松弛的策略将离散问题松弛为连续问题,这严重受到大量化误差的影响,并导致次优解。为了克服上述限制,在本文中,我们提出了一种新颖的监督CMH方法,即非对称监督一致和特定哈希(ASCSH)。具体来说,我们将映射矩阵明确分解为一致矩阵和特定模态矩阵,以充分利用不同模态之间的内在相关性。同时,提出了一种新颖的离散非对称框架来充分探索监督信息,其中成对相似性和语义标签被联合制定以指导哈希码学习过程。与现有的非对称方法不同,所开发的离散非对称结构能够离散且高效地解决二元约束问题,而无需任何松弛。为了验证所提出方法的有效性,在三个广泛使用的数据集上进行了广泛的实验,令人鼓舞的结果证明了ASCSH优于其他现有最先进的CMH方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验