Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden.
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
J Mater Chem B. 2022 Apr 6;10(14):2512-2522. doi: 10.1039/d1tb01485d.
Alternative liposome surface coatings for PEGylation to evade the immune system, particularly the complement system, have garnered significant interest. We previously reported poly(2-methacryloyloxyethyl phosphorylcholine) (MPC)-based lipids (PMPC-lipids) and investigated the surface modification of liposomes. In this study, we synthesize PMPC-lipids with polymerization degrees of 10 (MPC10-lipid), 20 (MPC20-lipid), 50 (MPC50-lipid), and 100 (MPC100-lipid), and coated liposomes with 1, 5, or 10 mol% PMPC-lipids (PMPC-liposomes). Non-modified and PEGylated liposomes are used as controls. We investigate the liposome size, surface charge, polydispersity index, and adsorption of plasma proteins to the liposomes post incubation in human plasma containing ,,','-ethylenediamine tetraacetic acid (EDTA) or lepirudin by some methods such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting, and automated capillary western blot, with emphasis on the binding of complement protein C3. It is shown that the coating of liposome PMPC-lipids can suppress protein adsorption more effectively with an increase in the molecular weight and molar ratio (1-10 mol%). Apolipoprotein A-I is detected on PMPC-liposomes with a higher molecular weight and higher molar ratio of PMPC-lipids, whereas α-macroglobulin is detected on non-modified, PEGylated, and PMPC-liposomes with a shorter polymer chain. In addition, a correlation is shown among the PMPC molecular weight, molar ratio, and C3 binding. The MPC10-lipid cannot inhibit C3 binding efficiently, whereas surface modifications with 10 mol% MPC20-lipid and 5 mol% and 10 mol% MPC50-lipid suppress both total protein and C3 binding. Hence, liposome modification with PMPC-lipids can be a possible strategy for avoiding complement activation.
用于逃避免疫系统(特别是补体系统)的聚乙二醇化的替代脂质体表面涂层引起了人们的极大兴趣。我们之前报道了基于聚(2-甲基丙烯酰氧基乙基磷酸胆碱)(MPC)的脂质(PMPC-脂质),并研究了脂质体的表面修饰。在这项研究中,我们合成了聚合度为 10(MPC10-脂质)、20(MPC20-脂质)、50(MPC50-脂质)和 100(MPC100-脂质)的 PMPC-脂质,并将 1、5 或 10 mol% 的 PMPC-脂质(PMPC-脂质体)包被在脂质体上。未修饰和聚乙二醇化的脂质体用作对照。我们通过一些方法研究了脂质体的大小、表面电荷、多分散指数以及在含有人血浆中的 、、、、、、-乙二胺四乙酸(EDTA)或 lepirudin 孵育后血浆蛋白对脂质体的吸附,这些方法包括十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)、western blot 和自动毛细管 western blot,重点是补体蛋白 C3 的结合。结果表明,随着分子量和摩尔比(1-10 mol%)的增加,脂质体 PMPC-脂质的涂层可以更有效地抑制蛋白质吸附。具有更高分子量和更高摩尔比的 PMPC-脂质的载脂蛋白 A-I 被检测到,而较短聚合物链的非修饰、聚乙二醇化和 PMPC-脂质上则检测到α-巨球蛋白。此外,还显示了 PMPC 分子量、摩尔比和 C3 结合之间的相关性。MPC10-脂质不能有效地抑制 C3 结合,而用 10 mol% MPC20-脂质和 5 mol%和 10 mol% MPC50-脂质进行表面修饰可以抑制总蛋白和 C3 的结合。因此,用 PMPC-脂质对脂质体进行修饰可能是避免补体激活的一种策略。