Pomogaev Vladimir, Lee Seunghoon, Shaik Sason, Filatov Michael, Choi Cheol Ho
Department of Chemistry, Kyungpook National University, Daegu 702-701, South Korea.
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
J Phys Chem Lett. 2021 Oct 14;12(40):9963-9972. doi: 10.1021/acs.jpclett.1c02494. Epub 2021 Oct 7.
The molecular orbital (MO) concept is a useful tool, which relates the molecular ground-state energy with the energies (and occupations) of the individual orbitals. However, analysis of the excited states from linear response computations is performed in terms of the initial state MOs or some other forms of orbitals, , natural or natural transition orbitals. Because these orbitals lack the respective energies, they do not allow developing a consistent orbital picture of the excited states. Herein, we argue that Dyson's orbitals enable description of the response states compatible with the concepts of molecular orbital theory. The Dyson orbitals and their energies obtained by mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) for the response ground state are remarkably similar to the canonical MOs obtained by the usual DFT calculation. For excited states, the Dyson orbitals provide a chemically sensible picture of the electronic transitions, thus bridging the chasm between orbital theory and response computations.
分子轨道(MO)概念是一种有用的工具,它将分子基态能量与各个轨道的能量(以及占据情况)联系起来。然而,线性响应计算对激发态的分析是根据初始态分子轨道或其他一些形式的轨道进行的,比如自然轨道或自然跃迁轨道。由于这些轨道缺乏各自的能量,所以它们无法构建出激发态的一致轨道图景。在此,我们认为戴森轨道能够实现与分子轨道理论概念相兼容的响应态描述。通过混合参考自旋翻转含时密度泛函理论(MRSF-TDDFT)获得的响应基态的戴森轨道及其能量与通过常规密度泛函理论计算得到的正则分子轨道非常相似。对于激发态,戴森轨道提供了一个关于电子跃迁的化学上合理的图景,从而弥合了轨道理论与响应计算之间的鸿沟。