INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon.
Robot Cognition Laboratory, Institute Marey, Dijon.
PLoS Comput Biol. 2021 Oct 7;17(10):e1008993. doi: 10.1371/journal.pcbi.1008993. eCollection 2021 Oct.
Recent research has revealed that during continuous perception of movies or stories, humans display cortical activity patterns that reveal hierarchical segmentation of event structure. Thus, sensory areas like auditory cortex display high frequency segmentation related to the stimulus, while semantic areas like posterior middle cortex display a lower frequency segmentation related to transitions between events. These hierarchical levels of segmentation are associated with different time constants for processing. Likewise, when two groups of participants heard the same sentence in a narrative, preceded by different contexts, neural responses for the groups were initially different and then gradually aligned. The time constant for alignment followed the segmentation hierarchy: sensory cortices aligned most quickly, followed by mid-level regions, while some higher-order cortical regions took more than 10 seconds to align. These hierarchical segmentation phenomena can be considered in the context of processing related to comprehension. In a recently described model of discourse comprehension word meanings are modeled by a language model pre-trained on a billion word corpus. During discourse comprehension, word meanings are continuously integrated in a recurrent cortical network. The model demonstrates novel discourse and inference processing, in part because of two fundamental characteristics: real-world event semantics are represented in the word embeddings, and these are integrated in a reservoir network which has an inherent gradient of functional time constants due to the recurrent connections. Here we demonstrate how this model displays hierarchical narrative event segmentation properties beyond the embeddings alone, or their linear integration. The reservoir produces activation patterns that are segmented by a hidden Markov model (HMM) in a manner that is comparable to that of humans. Context construction displays a continuum of time constants across reservoir neuron subsets, while context forgetting has a fixed time constant across these subsets. Importantly, virtual areas formed by subgroups of reservoir neurons with faster time constants segmented with shorter events, while those with longer time constants preferred longer events. This neurocomputational recurrent neural network simulates narrative event processing as revealed by the fMRI event segmentation algorithm provides a novel explanation of the asymmetry in narrative forgetting and construction. The model extends the characterization of online integration processes in discourse to more extended narrative, and demonstrates how reservoir computing provides a useful model of cortical processing of narrative structure.
最近的研究表明,在连续观看电影或故事时,人类会显示出皮质活动模式,揭示事件结构的分层分割。因此,像听觉皮层这样的感觉区域会显示与刺激相关的高频分割,而像后中部皮层这样的语义区域则会显示与事件之间转换相关的低频分割。这些分层分割层次与不同的处理时间常数相关。同样,当两组参与者在不同的上下文之前听到同一个叙述中的同一句话时,他们的神经反应最初是不同的,然后逐渐趋同。对齐的时间常数遵循分割层次结构:感觉皮层最快对齐,其次是中间区域,而一些更高阶的皮质区域需要超过 10 秒才能对齐。这些分层分割现象可以在与理解相关的处理背景下进行考虑。在最近描述的话语理解模型中,词义通过在一个包含十亿单词的语料库上进行预训练的语言模型来建模。在话语理解过程中,词义在一个递归皮质网络中不断整合。该模型展示了新颖的话语和推理处理,部分原因是两个基本特征:现实世界的事件语义在单词嵌入中表示,并且这些嵌入在一个储备网络中进行整合,由于递归连接,该网络具有内在的功能时间常数梯度。在这里,我们展示了这个模型如何显示分层叙述事件分割属性,超越了嵌入本身或它们的线性整合。储备网络产生的激活模式由隐马尔可夫模型 (HMM) 以类似于人类的方式进行分割。上下文构建在储备神经元子集中显示出连续的时间常数,而上下文遗忘在这些子集中具有固定的时间常数。重要的是,由具有较快时间常数的储备神经元亚组形成的虚拟区域以较短的事件进行分割,而具有较长时间常数的储备神经元亚组则更喜欢较长的事件。这个神经计算的递归神经网络模拟了 fMRI 事件分割算法所揭示的叙述事件处理,为叙述性遗忘和构建的不对称性提供了新的解释。该模型将话语中在线整合过程的特征扩展到更广泛的叙述中,并展示了储备计算如何为皮质处理叙述结构提供有用的模型。