Suppr超能文献

通过赤池信息准则,可以在Mk模型之上选择简约隐含权重的似然近似法。

Likelihood approximations of implied weights parsimony can be selected over the Mk model by the Akaike information criterion.

作者信息

Goloboff Pablo A, Arias J Salvador

机构信息

Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas, Fundación Miguel Lillo, Miguel Lillo 251, 4000, S.M. de Tucumán, Argentina.

出版信息

Cladistics. 2019 Dec;35(6):695-716. doi: 10.1111/cla.12380. Epub 2019 Mar 25.

Abstract

A likelihood method that approximates the behaviour of implied weighting is described. This approach provides a likelihood perspective on several aspects of implied weighting, such as guidance for the choice of concavity values, a justification to use different concavities for different numbers of taxa, and a natural basis for extended implied weighting. In this approach, the number of free parameters in the estimation depends on C, the number of characters (in contrast to the standard Mk model, which estimates 2T-3 parameters for T taxa). Depending on the characteristics of the dataset, the likelihood obtained with this approach may in some cases be similar or superior to that of the Mk model, but with fewer parameters being adjusted. Because of that tradeoff, testing against the Mk model by means of the Akaike information criterion on a set of 182 morphological datasets indicated many cases (36) in which the likelihood approximation to implied weighting is the best method, from an information-theoretic point of view. Given that it is expected to produce (almost) the same results as this maximum-likelihood approximation, implied weighting can therefore be seen as a valid alternative to the Mk model often used for morphological datasets, on the basis of a criterion for model fit widely advocated by likelihoodists.

摘要

本文描述了一种近似隐含加权行为的似然方法。这种方法为隐含加权的几个方面提供了一个似然视角,比如凹度值选择的指导、针对不同分类单元数量使用不同凹度的理由,以及扩展隐含加权的自然基础。在这种方法中,估计中的自由参数数量取决于字符数C(与标准的Mk模型不同,对于T个分类单元,Mk模型估计2T - 3个参数)。根据数据集的特征,在某些情况下,用这种方法获得的似然可能与Mk模型的似然相似或更优,但需要调整的参数更少。由于这种权衡,在一组182个形态学数据集上通过赤池信息准则与Mk模型进行比较测试表明,从信息论的角度来看,在许多情况下(36种情况),隐含加权的似然近似是最佳方法。鉴于预期它会产生(几乎)与这种最大似然近似相同的结果,因此基于似然主义者广泛倡导的模型拟合标准,隐含加权可以被视为常用于形态学数据集的Mk模型的有效替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验