Suppr超能文献

Graphene mitigated fracture and interfacial delamination of silicon film anodes through modulating the stress generation and development.

作者信息

Ye Cong, Liu Bowen, Shao Jiaojing, Song Zhiwei, Zhao Weimin, Yu Zhongliang, Wang Bin

机构信息

School of Materials and Metallurgy, Guizhou University, Guiyang 550025, People's Republic of China.

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.

出版信息

Nanotechnology. 2021 Oct 22;33(2). doi: 10.1088/1361-6528/ac2dc4.

Abstract

Silicon film is an attractive anode candidate in lithium ion batteries due to its two-dimensional (2D) morphology that is beneficial to buffer the large volume expansion of traditional silicon anodes. Even so, the generation of stress during the lithiation/delithiation process can still lead to the cracking and delamination of the silicon film from the current collector, ultimately resulting in the fast failure of the electrode. Laying a graphene layer between the silicon film and the current collector has been demonstrated to alleviate the stress generated during the battery cycling, but its universal application in commercial silicon structures with other dimensionalities remains technically challenging. Putting graphene on top of a 2D silicon film is more feasible and has also been shown with enhanced cycling stability, but the underneath mechanical mechanisms remain unclear. Herein, using the combination of 2D graphene and 2D silicon films as a model material, we investigate the stress generation and diffusion mode during the battery cycling to disclose the mechanical and electrochemical optimization of a silicon anode experimentally and theoretically. As a result, the optimum thickness of the silicon film and the coated graphene layers are obtained, and it is found the in-plane cracking and out-of-plane delamination of the silicon film could be mitigated by coating graphene due to the slow transfer of the normal and shear stresses. This work provides some understanding of the electrochemically derived mechanical behaviors of the graphene-coated battery materials and guidelines for developing stable high-energy-density batteries.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验