Guo Leiming, Klein Jonas, Thien Jannis, Philippi Michael, Haase Markus, Wollschläger Joachim, Steinhart Martin
Institut für Chemie neuer Materialien and CellNanOs, Universität Osnabrück, Barbarastr. 7, Osnabrück 49076, Germany.
Department of Physics, Universität Osnabrück, Barbarastr. 7, Osnabrück 49076, Germany.
ACS Appl Mater Interfaces. 2021 Oct 20;13(41):49567-49579. doi: 10.1021/acsami.1c17904. Epub 2021 Oct 7.
We report an optimized two-step thermopolymerization process carried out in contact with micropatterned molds that yields porous phenolic resin dual-use stamps with topographically micropatterned contact surfaces. With these stamps, two different parallel additive substrate manufacturing methods can be executed: capillary stamping and decal transfer microlithography. Under moderate contact pressures, the porous phenolic resin stamps are used for nondestructive ink transfer to substrates by capillary stamping. Continuous ink supply through the pore systems to the contact surfaces of the porous phenolic resin stamps enables multiple successive stamp-substrate contacts for lithographic ink deposition under ambient conditions. No deterioration of the quality of the deposited pattern occurs, and no interruptions for ink replenishment are required. Under a high contact pressure, porous phenolic resin stamps are used for decal transfer printing. In this way, the tips of the stamps' contact elements are lithographically transferred to counterpart substrates. The granular nature of the phenolic resin facilitates the rupture of the contact elements upon stamp retraction. The deposited phenolic resin micropatterns characterized by abundance of exposed hydroxyl groups are used as generic anchoring sites for further application-specific functionalizations. As an example, we deposited phenolic resin micropatterns on quartz crystal microbalance resonators and further functionalized them with polyethylenimine for preconcentration sensing of humidity and gaseous formic acid. We envision that also preconcentration coatings for other sensing methods, such as attenuated total reflection infrared spectroscopy and surface plasmon resonance spectroscopy, are accessible by this functionalization algorithm.
我们报道了一种优化的两步热聚合工艺,该工艺在与微图案模具接触的情况下进行,可生产出具有表面微图案化接触表面的多孔酚醛树脂两用印章。利用这些印章,可以执行两种不同的平行添加剂基板制造方法:毛细管冲压和贴花转移微光刻。在适度的接触压力下,多孔酚醛树脂印章用于通过毛细管冲压将油墨无损转移到基板上。通过孔系统向多孔酚醛树脂印章的接触表面持续供应油墨,使得在环境条件下能够进行多次连续的印章-基板接触,以进行光刻油墨沉积。沉积图案的质量不会下降,也无需中断补充油墨。在高接触压力下,多孔酚醛树脂印章用于贴花转移印刷。通过这种方式,印章接触元件的尖端被光刻转移到对应的基板上。酚醛树脂的颗粒性质有助于在印章缩回时接触元件的破裂。以大量暴露的羟基为特征的沉积酚醛树脂微图案用作进一步特定应用功能化的通用锚定位点。例如,我们在石英晶体微天平谐振器上沉积了酚醛树脂微图案,并进一步用聚乙烯亚胺对其进行功能化,以用于湿度和气态甲酸的预浓缩传感。我们设想,通过这种功能化算法,也可以获得用于其他传感方法(如衰减全反射红外光谱和表面等离子体共振光谱)的预浓缩涂层。