Nguyen Ngoc N, Berger Rüdiger, Kappl Michael, Butt Hans-Jürgen
Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
School of Chemical Engineering, Hanoi University of Science and Technology, Dai Co Viet Street 1, Hanoi 100000, Vietnam.
J Phys Chem C Nanomater Interfaces. 2021 Sep 30;125(38):21293-21300. doi: 10.1021/acs.jpcc.1c06997. Epub 2021 Sep 16.
The adhesive force of clathrates to surfaces is a century-old problem of pipeline blockage for the energy industry. Here, we provide new physical insight into the origin of this force by accounting for the existence of a quasi-liquid layer (QLL) on clathrate surfaces. To gain this insight, we measure the adhesive force between a tetrahydrofuran clathrate and a solid sphere. We detect a strong adhesion, which originates from a capillary bridge that is formed from a nanometer-thick QLL on the clathrate surface. The curvature of this capillary bridge is nanoscaled, causes a large negative Laplace pressure, and leads to a strong capillary attraction. The microscopic capillary bridge expands and consolidates over time. This dynamic behavior explains the time-dependent increase of measured capillary forces. The adhesive force decreases greatly upon increasing the roughness and the hydrophobicity of the sphere, which founds the fundamental basics for reducing clathrate adhesion by using surface coating.
笼形包合物与表面的粘附力是能源行业管道堵塞这一存在百年的问题。在此,我们通过考虑笼形包合物表面准液体层(QLL)的存在,对这种力的起源提供了新的物理见解。为获得这一见解,我们测量了四氢呋喃笼形包合物与固体球之间的粘附力。我们检测到很强的粘附力,其源于由笼形包合物表面纳米厚的QLL形成的毛细桥。这种毛细桥的曲率为纳米级,会产生很大的负拉普拉斯压力,并导致很强的毛细吸引力。微观毛细桥会随时间扩展和巩固。这种动态行为解释了所测毛细力随时间的增加。当球体的粗糙度和疏水性增加时,粘附力会大幅降低,这为通过表面涂层降低笼形包合物粘附力奠定了基本基础。