Hu Sijia, Vo Loan, Monteiro Deepak, Bodnar Scot, Prince Philippe, Koh Carolyn A
Center for Hydrate Research, Chemical & Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, United States.
Halliburton, Houston, Texas 77032, United States.
Langmuir. 2021 Feb 9;37(5):1651-1661. doi: 10.1021/acs.langmuir.0c02503. Epub 2021 Jan 28.
Gas hydrate interparticle cohesive forces are important to determine the hydrate crystal particle agglomeration behavior and subsequent hydrate slurry transport that is critical to preventing potentially catastrophic consequences of subsea oil/gas pipeline blockages. A unique high-pressure micromechanical force apparatus has been employed to investigate the effect of the molecular structure of industrially relevant hydrate antiagglomerant (AA) inhibitors on gas hydrate crystal interparticle interactions. Four AA molecules with known detailed structures [quaternary ammonium salts with two long tails (R1) and one short tail (R2)] in which the R1 has 12 carbon (C12) and 8 carbon (C8) and saturated (C-C) versus unsaturated (C═C) bonding are used in this work to investigate their interfacial activity to suppress hydrate crystal interparticle interactions in the presence of two liquid hydrocarbons (-dodecane and -heptane). All AAs were able to reduce the interparticle cohesive force from the baseline (23.5 ± 2.5 mN m), but AA-C12 shows superior performance in both liquid hydrocarbons compared to the other AAs. The interfacial measurements indicate that the AA with an R1 longer alkyl chain length can provide a denser barrier, and the AA molecules may have higher packing density when the AA R1 alkyl tail length is comparable to that of the liquid hydrocarbon chain on the gas hydrate crystal surface. Increasing the salinity can promote the effectiveness of an AA molecule and can also eliminate the effect of longer particle contact times, which typically increases the interparticle cohesive force. This work reports the first experimental investigation of high-performance known molecular structure AAs under industrially relevant conditions, showing that these molecules can reduce the interfacial tension and increase the gas hydrate-water contact angle, thereby minimizing the gas hydrate interparticle interactions. The structure-performance relation reported in this work can be used to help in the design of improved AA inhibitor molecules that will be critical to industrial hydrate crystal slurry transport.
气体水合物颗粒间的内聚力对于确定水合物晶体颗粒的团聚行为以及随后的水合物浆液输送至关重要,而这对于防止海底油气管道堵塞可能带来的灾难性后果至关重要。一种独特的高压微机械力装置已被用于研究工业相关水合物抗聚剂(AA)抑制剂的分子结构对气体水合物晶体颗粒间相互作用的影响。在这项工作中,使用了四种具有已知详细结构的AA分子[带有两条长链(R1)和一条短链(R2)的季铵盐],其中R1具有12个碳(C12)和8个碳(C8),且分别为饱和(C-C)键和不饱和(C═C)键,以研究它们在两种液态烃(正十二烷和正庚烷)存在下抑制水合物晶体颗粒间相互作用的界面活性。所有的AA都能够将颗粒间内聚力从基线值(23.5±2.5 mN/m)降低,但与其他AA相比,AA-C12在两种液态烃中均表现出更优异的性能。界面测量表明,具有较长R1烷基链长度的AA能够提供更致密的屏障,并且当AA的R1烷基链长度与气体水合物晶体表面的液态烃链长度相当时,AA分子可能具有更高的堆积密度。增加盐度可以提高AA分子的有效性,并且还可以消除较长颗粒接触时间的影响,而较长的颗粒接触时间通常会增加颗粒间的内聚力。这项工作首次报道了在工业相关条件下对具有已知分子结构的高性能AA的实验研究,表明这些分子可以降低界面张力并增加气体水合物与水的接触角,从而使气体水合物颗粒间的相互作用最小化。这项工作中报道的结构-性能关系可用于帮助设计改进的AA抑制剂分子,这对于工业水合物晶体浆液输送至关重要。