Broekman André, Gräbe Petrus Johannes
Department of Civil Engineering, Engineering 4.0, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa.
Civil and Environmental Engineering, University of Southampton.
Data Brief. 2021 Sep 23;38:107411. doi: 10.1016/j.dib.2021.107411. eCollection 2021 Oct.
A Perfectly Accurate, Synthetic dataset featuring a virtual railway EnVironment for Multi-View Stereopsis (RailEnV-PASMVS) is presented, consisting of 40 scenes and 79,800 renderings together with ground truth depth maps, extrinsic and intrinsic camera parameters, pseudo-geolocation metadata and binary segmentation masks of all the track components. Every scene is rendered from a set of 3 cameras, each positioned relative to the track for optimal 3D reconstruction of the rail profile. The set of cameras is translated across the 100 m length of tangent (straight) track to yield a total of 1995 camera views. Photorealistic lighting of each of the 40 scenes is achieved with the implementation of high-definition, high dynamic range (HDR) environmental textures. Additional variation is introduced in the form of camera focal lengths, camera location and rotation parameters and shader modifications for materials. Representative track geometry provides random and unique vertical alignment data for the rail profile for every scene. This primary, synthetic dataset is augmented by a smaller photograph collection consisting of 320 annotated photographs for improved semantic segmentation performance. The combination of diffuse and specular properties increases the ambiguity and complexity of the data distribution. RailEnV-PASMVS represents an application specific dataset for railway engineering, against the backdrop of existing datasets available in the field of computer vision, providing the precision required for novel research applications in the field of transportation engineering. The novelty of the RailEnV-PASMVS dataset is demonstrated with two use cases, resolving shortcomings of the existing PASMVS dataset.
本文提出了一个用于多视图立体视觉的虚拟铁路环境的完美精确合成数据集(RailEnV-PASMVS),它由40个场景和79800幅渲染图组成,同时还包括地面真值深度图、相机外部和内部参数、伪地理定位元数据以及所有轨道组件的二进制分割掩码。每个场景由一组3个相机渲染,每个相机相对于轨道进行定位,以实现轨道轮廓的最佳三维重建。这组相机沿着100米长的切线(直线)轨道平移,总共产生1995个相机视图。通过实施高清、高动态范围(HDR)环境纹理,实现了40个场景中每个场景的逼真照明。通过相机焦距、相机位置和旋转参数以及材质的着色器修改等形式引入了额外的变化。代表性的轨道几何形状为每个场景的轨道轮廓提供随机且独特的垂直对齐数据。这个主要的合成数据集通过一个较小的照片集进行扩充,该照片集由320张带注释的照片组成,以提高语义分割性能。漫反射和镜面反射属性的结合增加了数据分布的模糊性和复杂性。在计算机视觉领域现有数据集的背景下,RailEnV-PASMVS代表了一个针对铁路工程的特定应用数据集,为交通工程领域的新研究应用提供了所需的精度。通过两个用例展示了RailEnV-PASMVS数据集的新颖性,解决了现有PASMVS数据集的缺点。