Suppr超能文献

氧化铜纳米颗粒的能带能量转化与其溶解度的关系及其对细胞反应的影响。

Transformation in band energetics of CuO nanoparticles as a function of solubility and its impact on cellular response.

机构信息

Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India.

Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

出版信息

NanoImpact. 2021 Apr;22:100324. doi: 10.1016/j.impact.2021.100324. Epub 2021 May 15.

Abstract

Nanoparticles under a reactive microenvironment, have the propensity to undergo morphological and compositional changes, which can translate into band edge widening. Although cell membrane depolarization has been linked with the electronic band structure of nanomaterials in their native state, the change in band structure as a consequence of a soluble nanoparticle system is less studied. Therefore we studied the consequence of dissolution of CuO nanoparticles on the band structure and flat band potentials and correlated it with its ability to induce a intracellular oxidative stress. The temporal variation in bandgap, fermi energy level and valence band maxima were evaluated on the remnant CuO nanoparticles post dissolution. CuO nanoparticles showed a very high dissolution in simulated body fluid (51%) and cell culture media (75%). This dissolution resulted in an physico-chemical transformation of CuO nanoparticles. A temporal increase in the bandgap energy as a result of media interaction was up to 107%. Temporal variation in the flat band potentials with the generation of intracellular ROS, cell viability, late and early apoptosis in addition to necrosis on RAW 264.7 cells was established due to biological redox potential overlap. The mRNA expression for TNF-α, IL-6, IL-1β and IL-10 in response to the particle treatment was also evalulated for 6 hours. Through this study, we establish that the toxicological potential of CuO nanoparticles is a temporal function of band energies (its overlap with the intracellular redox potential) followed by release of ionic species in the cytotoxic regime.

摘要

在反应性微环境下,纳米颗粒倾向于发生形态和组成变化,这可能导致能带边缘变宽。虽然细胞膜去极化与纳米材料在其天然状态下的电子能带结构有关,但可溶性纳米颗粒体系中能带结构的变化研究较少。因此,我们研究了 CuO 纳米颗粒溶解对能带结构和平带电位的影响,并将其与诱导细胞内氧化应激的能力相关联。在溶解后剩余的 CuO 纳米颗粒上评估了带隙、费米能级和价带最大值的时间变化。CuO 纳米颗粒在模拟体液(51%)和细胞培养基(75%)中表现出非常高的溶解度。这种溶解导致了 CuO 纳米颗粒的物理化学转化。由于介质相互作用,能带隙能量在时间上增加了 107%。由于生物氧化还原电位重叠,在 RAW 264.7 细胞中产生的细胞内 ROS、细胞活力、晚期和早期细胞凋亡以及坏死,以及平带电位的时间变化得以确定。还针对 TNF-α、IL-6、IL-1β 和 IL-10 的 mRNA 表达进行了 6 小时的评估。通过这项研究,我们确定 CuO 纳米颗粒的毒理学潜力是能带能量的时间函数(其与细胞内氧化还原电位的重叠),随后在细胞毒性范围内释放离子物种。

相似文献

本文引用的文献

8
Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.氧化锌纳米结构及掺杂材料的带隙变窄与变宽
Nanoscale Res Lett. 2015 Dec;10(1):1034. doi: 10.1186/s11671-015-1034-9. Epub 2015 Aug 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验