Alcolea-Rodriguez V, Portela R, Calvino-Casilda V, Bañares M A
Instituto de Catálisis y Petroleoquímica, ICP-CSIC Marie Curie 2 28049-Madrid Spain
Departamento de Ingeniería Eléctrica, Electrónica, Control, Telemática y Química Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, UNED Juan del Rosal 12 28040-Madrid Spain
Environ Sci Nano. 2024 Jul 9;11(9):3744-3760. doi: 10.1039/d3en00810j. eCollection 2024 Sep 12.
Methanol probe chemisorption quantifies the number of reactive sites at the surface of engineered nanomaterials, enabling normalization per reactive site in reactivity and toxicity tests, rather than per mass or physical surface area. Subsequent temperature-programmed surface reaction (TPSR) of chemisorbed methanol identifies the reactive nature of surface sites (acidic, basic, redox or combination thereof) and their reactivity. Complementary to the methanol assay, a dithiothreitol (DTT) probe oxidation reaction is used to evaluate the oxidation capacity. These acellular approaches to quantify the number, nature, and reactivity of surface sites constitute a new approach methodology (NAM) for site-specific classification of nanomaterials. As a proof of concept, CuO, CeO, ZnO, FeO, CuFeO, CoO and two TiO nanomaterials were probed. A harmonized reactive descriptor for ENMs was obtained: the DTT oxidation rate per reactive surface site, or oxidative turnover frequency (OxTOF). CuO and CuFeO ENMs exhibit the largest reactive site surface density and possess the highest oxidizing ability in the series, as estimated by the DTT probe reaction, followed by CeO NM-211 and then titania nanomaterials (DT-51 and NM-101) and FeO. DTT depletion for ZnO NM-110 was associated with dissolved zinc ions rather than the ZnO particles; however, the basic characteristics of the ZnO NM-110 particles were evidenced by methanol TPSR. These acellular assays allow ranking the eight nanomaterials into three categories with statistically different oxidative potentials: CuO, CuFeO and CoO are the most reactive; ceria exhibits a moderate reactivity; and iron oxide and the titanias possess a low oxidative potential.
甲醇探针化学吸附可量化工程纳米材料表面的活性位点数量,从而在反应性和毒性测试中实现按每个活性位点进行归一化,而非按质量或物理表面积进行归一化。随后对化学吸附的甲醇进行程序升温表面反应(TPSR),可确定表面位点的反应性质(酸性、碱性、氧化还原或其组合)及其反应活性。作为甲醇测定的补充,二硫苏糖醇(DTT)探针氧化反应用于评估氧化能力。这些用于量化表面位点数量、性质和反应活性的无细胞方法构成了一种用于纳米材料位点特异性分类的新方法学(NAM)。作为概念验证,对CuO、CeO、ZnO、FeO、CuFeO、CoO和两种TiO纳米材料进行了探测。获得了一种针对工程纳米材料的统一反应描述符:每个活性表面位点的DTT氧化速率,即氧化周转频率(OxTOF)。通过DTT探针反应估计,CuO和CuFeO工程纳米材料在该系列中表现出最大的活性位点表面密度,并具有最高的氧化能力,其次是CeO NM - 211,然后是二氧化钛纳米材料(DT - 51和NM - 101)以及FeO。ZnO NM - 110的DTT消耗与溶解的锌离子有关,而非与ZnO颗粒有关;然而,甲醇TPSR证明了ZnO NM - 110颗粒的碱性特征。这些无细胞测定法可将这八种纳米材料分为具有统计学上不同氧化电位的三类:CuO、CuFeO和CoO反应性最强;氧化铈表现出中等反应性;氧化铁和二氧化钛具有较低的氧化电位。