Suppr超能文献

迁移学习通过成人领域的无主体适应提高基于加速度计的儿童活动识别。

Transfer Learning Improves Accelerometer-Based Child Activity Recognition via Subject-Independent Adult-Domain Adaption.

出版信息

IEEE J Biomed Health Inform. 2022 May;26(5):2086-2095. doi: 10.1109/JBHI.2021.3118717. Epub 2022 May 5.

Abstract

Wearable activity recognition can collate the type, intensity, and duration of each child's physical activity profile, which is important for exploring underlying adolescent health mechanisms. Traditional machine-learning-based approaches require large labeled data sets; however, child activity data sets are typically small and insufficient. Thus, we proposed a transfer learning approach that adapts adult-domain data to train a high-fidelity, subject-independent model for child activity recognition. Twenty children and twenty adults wore an accelerometer wristband while performing walking, running, sitting, and rope skipping activities. Activity classification accuracy was determined via the traditional machine learning approach without transfer learning and with the proposed subject-independent transfer learning approach. Results showed that transfer learning increased classification accuracy to 91.4% as compared to 80.6% without transfer learning. These results suggest that subject-independent transfer learning can improve accuracy and potentially reduce the size of the required child data sets to enable physical activity monitoring systems to be adopted more widely, quickly, and economically for children and provide deeper insights into injury prevention and health promotion strategies.

摘要

可穿戴活动识别可以整理每个孩子的身体活动情况的类型、强度和持续时间,这对于探索潜在的青少年健康机制非常重要。传统的基于机器学习的方法需要大量标记数据集;然而,儿童活动数据集通常较小且不足。因此,我们提出了一种迁移学习方法,该方法可以利用成人领域的数据来训练一个高保真、独立于主体的儿童活动识别模型。二十名儿童和二十名成年人在进行步行、跑步、坐着和跳绳活动时佩戴了加速度计腕带。通过传统的机器学习方法(不进行迁移学习)和所提出的独立于主体的迁移学习方法来确定活动分类准确性。结果表明,与不进行迁移学习相比,迁移学习将分类准确性提高到 91.4%。这些结果表明,独立于主体的迁移学习可以提高准确性,并可能减少所需儿童数据集的大小,从而更广泛、更快速和更经济地为儿童采用身体活动监测系统,并深入了解伤害预防和健康促进策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验