Suppr超能文献

基于人群登记数据的包含第二原发癌和后续癌症的病因特异性生存估计的影响。

Impact of including second and later cancers in cause-specific survival estimates using population-based registry data.

机构信息

Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland.

Azores Cancer Registry, Azores Oncological Center, Angra do Heroísmo, Portugal.

出版信息

Cancer. 2022 Feb 1;128(3):547-557. doi: 10.1002/cncr.33940. Epub 2021 Oct 8.

Abstract

BACKGROUND

Second or later primary cancers account for approximately 20% of incident cases in the United States. Currently, cause-specific survival (CSS) analyses exclude these cancers because the cause of death (COD) classification algorithm was available only for first cancers. The authors added rules for later cancers to the Surveillance, Epidemiology, and End Results cause-specific death classification algorithm and evaluated CSS to include individuals with prior tumors.

METHODS

The authors constructed 2 cohorts: 1) the first ever primary cohort, including patients whose first cancer was diagnosed during 2000 through 2016) and 2) the earliest matching primary cohort, including patients with any cancer who matched the selection criteria irrespective of whether it was the first or a later cancer diagnosed during 2000 through 2016. The cohorts' CSS estimates were compared using follow-up through December 31, 2017. The new rules were used in the second cohort for patients whose first cancers during 2000 through 2016 were their second or later cancers.

RESULTS

Overall, there were no statistically significant differences in CSS estimates between the 2 cohorts. Estimates were similar by age, stage, race, and time since diagnosis, except for patients with leukemia and those aged 65 to 74 years (3.4 percentage point absolute difference).

CONCLUSIONS

The absolute difference in CSS estimates for the first cancer ever cohort versus earliest of any cancers cohort in the study period was small for most cancer types. As the number of newly diagnosed patients with prior cancers increases, the algorithm will make CSS more inclusive and enable estimating survival for a group of patients with cancer for whom life tables are not available or life tables are available but do not capture other-cause mortality appropriately.

摘要

背景

在美国,约 20%的新发病例是第二或后续原发性癌症。目前,特定原因生存(CSS)分析排除了这些癌症,因为死因(COD)分类算法仅适用于第一癌症。作者为监测、流行病学和最终结果特定原因死亡分类算法添加了针对后续癌症的规则,并评估了包括先前患有肿瘤的个体的 CSS。

方法

作者构建了两个队列:1)首次原发性队列,包括在 2000 年至 2016 年期间首次诊断出第一癌症的患者;2)最早匹配的原发性队列,包括在 2000 年至 2016 年期间患有任何癌症且符合选择标准的患者,无论其癌症是否为首次或后续诊断。使用截至 2017 年 12 月 31 日的随访比较了两个队列的 CSS 估计值。对于在 2000 年至 2016 年期间患有第一癌症的患者,新规则用于第二队列,这些癌症是他们的第二或后续癌症。

结果

总体而言,两个队列的 CSS 估计值之间没有统计学上的显著差异。估计值在年龄、阶段、种族和诊断后时间方面相似,但白血病患者和 65 至 74 岁的患者除外(绝对差异为 3.4 个百分点)。

结论

在研究期间,首次癌症队列与最早任何癌症队列的 CSS 估计值之间的绝对差异对于大多数癌症类型都很小。随着新诊断出患有先前癌症的患者数量增加,该算法将使 CSS 更具包容性,并能够为一组无法使用生命表或生命表可用但不能适当捕获其他原因死亡率的癌症患者估计生存率。

相似文献

2
The effect of multiple primary rules on population-based cancer survival.多原发规则对基于人群的癌症生存的影响。
Cancer Causes Control. 2013 Jun;24(6):1231-42. doi: 10.1007/s10552-013-0203-3. Epub 2013 Apr 5.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验