Chiliveri Sai Chaitanya, Louis John M, Ghirlando Rodolfo, Bax Ad
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Sci Adv. 2021 Oct 8;7(41):eabk2226. doi: 10.1126/sciadv.abk2226.
Entry of SARS-CoV-2 into a host cell is mediated by spike, a class I viral fusion protein responsible for merging the viral and host cell membranes. Recent studies have revealed atomic-resolution models for both the postfusion 6-helix bundle (6HB) and the prefusion state of spike. However, a mechanistic understanding of the molecular basis for the intervening structural transition, important for the design of fusion inhibitors, has remained elusive. Using nuclear magnetic resonance spectroscopy and other biophysical methods, we demonstrate the presence of α-helical, membrane-bound, intermediate states of spike’s heptad repeat (HR1 and HR2) domains that are embedded at the lipid-water interface while in a slow dynamic equilibrium with the postfusion 6HB state. These results support a model where the HR domains lower the large energy barrier associated with membrane fusion by destabilizing the host and viral membranes, while 6HB formation actively drives their fusion by forcing physical proximity.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)进入宿主细胞是由刺突蛋白介导的,刺突蛋白是一种I类病毒融合蛋白,负责使病毒膜与宿主细胞膜融合。最近的研究揭示了刺突蛋白融合后6螺旋束(6HB)和融合前状态的原子分辨率模型。然而,对于干预结构转变的分子基础的机制理解,这对于融合抑制剂的设计很重要,仍然难以捉摸。利用核磁共振光谱和其他生物物理方法,我们证明了刺突蛋白七肽重复序列(HR1和HR2)结构域存在α螺旋、膜结合的中间状态,这些结构域嵌入脂质-水界面,同时与融合后6HB状态处于缓慢的动态平衡。这些结果支持了一个模型,即HR结构域通过破坏宿主膜和病毒膜的稳定性来降低与膜融合相关的巨大能量屏障,而6HB的形成通过迫使物理接近来积极驱动它们的融合。