文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积神经网络的框架,用于从原生和合成对比结构 MRI 中快速自动分割丘脑核。

Convolutional Neural Network Based Frameworks for Fast Automatic Segmentation of Thalamic Nuclei from Native and Synthesized Contrast Structural MRI.

机构信息

Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.

Department of Medical Imaging, University of Arizona, Tucson, AZ, 85724, USA.

出版信息

Neuroinformatics. 2022 Jul;20(3):651-664. doi: 10.1007/s12021-021-09544-5. Epub 2021 Oct 9.


DOI:10.1007/s12021-021-09544-5
PMID:34626333
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8993941/
Abstract

Thalamic nuclei have been implicated in several neurological diseases. Thalamic nuclei parcellation from structural MRI is challenging due to poor intra-thalamic nuclear contrast while methods based on diffusion and functional MRI are affected by limited spatial resolution and image distortion. Existing multi-atlas based techniques are often computationally intensive and time-consuming. In this work, we propose a 3D convolutional neural network (CNN) based framework for thalamic nuclei parcellation using T1-weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE) images. Transformation of images to an efficient representation has been proposed to improve the performance of subsequent classification tasks especially when working with limited labeled data. We investigate this by transforming the MPRAGE images to White-Matter-nulled MPRAGE (WMn-MPRAGE) contrast, previously shown to exhibit good intra-thalamic nuclear contrast, prior to the segmentation step. We trained two 3D segmentation frameworks using MPRAGE images (n = 35 subjects): (a) a native contrast segmentation (NCS) on MPRAGE images and (b) a synthesized contrast segmentation (SCS) where synthesized WMn-MPRAGE representation generated by a contrast synthesis CNN were used. Thalamic nuclei labels were generated using THOMAS, a multi-atlas segmentation technique proposed for WMn-MPRAGE images. The segmentation accuracy and clinical utility were evaluated on a healthy cohort (n = 12) and a cohort (n = 45) comprising of healthy subjects and patients with alcohol use disorder (AUD), respectively. Both the segmentation CNNs yielded comparable performances on most thalamic nuclei with Dice scores greater than 0.84 for larger nuclei and at least 0.7 for smaller nuclei. However, for some nuclei, the SCS CNN yielded significant improvements in Dice scores (medial geniculate nucleus, P = 0.003, centromedian nucleus, P = 0.01) and percent volume difference (ventral anterior, P = 0.001, ventral posterior lateral, P = 0.01) over NCS. In the AUD cohort, the SCS CNN demonstrated a significant atrophy in ventral lateral posterior nucleus in AUD patients compared to healthy age-matched controls (P = 0.01), agreeing with previous studies on thalamic atrophy in alcoholism, whereas the NCS CNN showed spurious atrophy of the ventral posterior lateral nucleus. CNN-based segmentation of thalamic nuclei provides a fast and automated technique for thalamic nuclei prediction in MPRAGE images. The transformation of images to an efficient representation, such as WMn-MPRAGE, can provide further improvements in segmentation performance.

摘要

丘脑核已被牵涉到多种神经疾病中。由于丘脑核内对比度差,因此从结构磁共振成像中分割丘脑核具有挑战性,而基于扩散和功能磁共振成像的方法则受到空间分辨率和图像变形的限制。现有的基于多图谱的技术通常计算量很大且耗时。在这项工作中,我们提出了一种基于三维卷积神经网络(CNN)的框架,用于使用 T1 加权磁化准备快速梯度回波(MPRAGE)图像对丘脑核进行分割。已经提出了将图像转换为有效表示的方法,以提高后续分类任务的性能,特别是在使用有限的标记数据时。我们通过将 MPRAGE 图像转换为先前显示出良好的丘脑核内对比度的白质空化 MPRAGE(WMn-MPRAGE)对比度,来研究这一点,然后再进行分割步骤。我们使用 MPRAGE 图像(n = 35 名受试者)训练了两个 3D 分割框架:(a)在 MPRAGE 图像上的原始对比度分割(NCS)和(b)通过对比度合成 CNN 生成的合成 WMn-MPRAGE 表示的合成对比度分割(SCS)。使用 THOMAS 生成丘脑核标签,THOMAS 是一种针对 WMn-MPRAGE 图像的多图谱分割技术。在健康队列(n = 12)和包括健康受试者和酒精使用障碍(AUD)患者的队列(n = 45)上评估了分割的准确性和临床实用性。两个分割 CNN 在大多数丘脑核上都具有相似的性能,较大的核的 Dice 评分大于 0.84,较小的核的 Dice 评分至少为 0.7。但是,对于某些核,SCS CNN 在 Dice 评分(内侧膝状体核,P = 0.003,中央核,P = 0.01)和体积百分比差异(腹侧前核,P = 0.001,腹侧后外侧核,P = 0.01)方面均获得了显著提高。与酒精中毒中先前的丘脑萎缩研究一致,与健康年龄匹配的对照组相比,AUD 队列中的 SCS CNN 显示出腹侧外侧后核的明显萎缩(P = 0.01),而 NCS CNN 显示出腹侧后外侧核的虚假萎缩。基于 CNN 的丘脑核分割为 MPRAGE 图像中的丘脑核预测提供了一种快速自动的技术。将图像转换为有效的表示形式(例如 WMn-MPRAGE)可以进一步提高分割性能。

相似文献

[1]
Convolutional Neural Network Based Frameworks for Fast Automatic Segmentation of Thalamic Nuclei from Native and Synthesized Contrast Structural MRI.

Neuroinformatics. 2022-7

[2]
Automated thalamic nuclei segmentation using multi-planar cascaded convolutional neural networks.

Magn Reson Imaging. 2020-11

[3]
Fast automatic segmentation of thalamic nuclei from MP2RAGE acquisition at 7 Tesla.

Magn Reson Med. 2021-5

[4]
Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation.

Brain Struct Funct. 2024-6

[5]
White-matter-nulled MPRAGE at 7T reveals thalamic lesions and atrophy of specific thalamic nuclei in multiple sclerosis.

Mult Scler. 2020-7

[6]
Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI.

Neuroimage. 2019-3-17

[7]
Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T.

Neuroimage. 2014-1-1

[8]
Differential vulnerability of thalamic nuclei in multiple sclerosis.

Mult Scler. 2023-2

[9]
Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation.

medRxiv. 2024-2-1

[10]
Multi-atlas thalamic nuclei segmentation on standard T1-weighed MRI with application to normal aging.

Hum Brain Mapp. 2023-2-1

引用本文的文献

[1]
Thalamic atrophy in multiple sclerosis is associated with tract disconnection and altered microglia.

Acta Neuropathol. 2025-5-28

[2]
Thalamic nuclei segmentation from T1-weighted MRI: Unifying and benchmarking state-of-the-art methods.

Imaging Neurosci (Camb). 2024-5-8

[3]
A roadmap towards standardized neuroimaging approaches for human thalamic nuclei.

Nat Rev Neurosci. 2024-12

[4]
Vulnerability of Thalamic Nuclei at CSF Interface During the Entire Course of Multiple Sclerosis.

Neurol Neuroimmunol Neuroinflamm. 2024-5

[5]
Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation.

Brain Struct Funct. 2024-6

[6]
Thalamic nuclei changes in early and late onset Alzheimer's disease.

Curr Res Neurobiol. 2023-3-24

[7]
Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas.

Neuroimage. 2023-7-1

[8]
Multi-atlas thalamic nuclei segmentation on standard T1-weighed MRI with application to normal aging.

Hum Brain Mapp. 2023-2-1

本文引用的文献

[1]
Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.

Radiology. 2021-7

[2]
Structural Changes in Thalamic Nuclei Across Prodromal and Clinical Alzheimer's Disease.

J Alzheimers Dis. 2021

[3]
MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients.

Comput Biol Med. 2021-5

[4]
Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.

Radiology. 2021-5

[5]
A Stacked Generalization of 3D Orthogonal Deep Learning Convolutional Neural Networks for Improved Detection of White Matter Hyperintensities in 3D FLAIR Images.

AJNR Am J Neuroradiol. 2021-4

[6]
A review on medical imaging synthesis using deep learning and its clinical applications.

J Appl Clin Med Phys. 2021-1

[7]
Automated thalamic nuclei segmentation using multi-planar cascaded convolutional neural networks.

Magn Reson Imaging. 2020-11

[8]
A systematic comparison of structural-, structural connectivity-, and functional connectivity-based thalamus parcellation techniques.

Brain Struct Funct. 2020-6

[9]
MRI Cross-Modality Image-to-Image Translation.

Sci Rep. 2020-2-28

[10]
Deep-Learning Generated Synthetic Double Inversion Recovery Images Improve Multiple Sclerosis Lesion Detection.

Invest Radiol. 2020-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索