Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.
Department of Medical Imaging, University of Arizona, Tucson, AZ, 85724, USA.
Neuroinformatics. 2022 Jul;20(3):651-664. doi: 10.1007/s12021-021-09544-5. Epub 2021 Oct 9.
Thalamic nuclei have been implicated in several neurological diseases. Thalamic nuclei parcellation from structural MRI is challenging due to poor intra-thalamic nuclear contrast while methods based on diffusion and functional MRI are affected by limited spatial resolution and image distortion. Existing multi-atlas based techniques are often computationally intensive and time-consuming. In this work, we propose a 3D convolutional neural network (CNN) based framework for thalamic nuclei parcellation using T1-weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE) images. Transformation of images to an efficient representation has been proposed to improve the performance of subsequent classification tasks especially when working with limited labeled data. We investigate this by transforming the MPRAGE images to White-Matter-nulled MPRAGE (WMn-MPRAGE) contrast, previously shown to exhibit good intra-thalamic nuclear contrast, prior to the segmentation step. We trained two 3D segmentation frameworks using MPRAGE images (n = 35 subjects): (a) a native contrast segmentation (NCS) on MPRAGE images and (b) a synthesized contrast segmentation (SCS) where synthesized WMn-MPRAGE representation generated by a contrast synthesis CNN were used. Thalamic nuclei labels were generated using THOMAS, a multi-atlas segmentation technique proposed for WMn-MPRAGE images. The segmentation accuracy and clinical utility were evaluated on a healthy cohort (n = 12) and a cohort (n = 45) comprising of healthy subjects and patients with alcohol use disorder (AUD), respectively. Both the segmentation CNNs yielded comparable performances on most thalamic nuclei with Dice scores greater than 0.84 for larger nuclei and at least 0.7 for smaller nuclei. However, for some nuclei, the SCS CNN yielded significant improvements in Dice scores (medial geniculate nucleus, P = 0.003, centromedian nucleus, P = 0.01) and percent volume difference (ventral anterior, P = 0.001, ventral posterior lateral, P = 0.01) over NCS. In the AUD cohort, the SCS CNN demonstrated a significant atrophy in ventral lateral posterior nucleus in AUD patients compared to healthy age-matched controls (P = 0.01), agreeing with previous studies on thalamic atrophy in alcoholism, whereas the NCS CNN showed spurious atrophy of the ventral posterior lateral nucleus. CNN-based segmentation of thalamic nuclei provides a fast and automated technique for thalamic nuclei prediction in MPRAGE images. The transformation of images to an efficient representation, such as WMn-MPRAGE, can provide further improvements in segmentation performance.
丘脑核已被牵涉到多种神经疾病中。由于丘脑核内对比度差,因此从结构磁共振成像中分割丘脑核具有挑战性,而基于扩散和功能磁共振成像的方法则受到空间分辨率和图像变形的限制。现有的基于多图谱的技术通常计算量很大且耗时。在这项工作中,我们提出了一种基于三维卷积神经网络(CNN)的框架,用于使用 T1 加权磁化准备快速梯度回波(MPRAGE)图像对丘脑核进行分割。已经提出了将图像转换为有效表示的方法,以提高后续分类任务的性能,特别是在使用有限的标记数据时。我们通过将 MPRAGE 图像转换为先前显示出良好的丘脑核内对比度的白质空化 MPRAGE(WMn-MPRAGE)对比度,来研究这一点,然后再进行分割步骤。我们使用 MPRAGE 图像(n = 35 名受试者)训练了两个 3D 分割框架:(a)在 MPRAGE 图像上的原始对比度分割(NCS)和(b)通过对比度合成 CNN 生成的合成 WMn-MPRAGE 表示的合成对比度分割(SCS)。使用 THOMAS 生成丘脑核标签,THOMAS 是一种针对 WMn-MPRAGE 图像的多图谱分割技术。在健康队列(n = 12)和包括健康受试者和酒精使用障碍(AUD)患者的队列(n = 45)上评估了分割的准确性和临床实用性。两个分割 CNN 在大多数丘脑核上都具有相似的性能,较大的核的 Dice 评分大于 0.84,较小的核的 Dice 评分至少为 0.7。但是,对于某些核,SCS CNN 在 Dice 评分(内侧膝状体核,P = 0.003,中央核,P = 0.01)和体积百分比差异(腹侧前核,P = 0.001,腹侧后外侧核,P = 0.01)方面均获得了显著提高。与酒精中毒中先前的丘脑萎缩研究一致,与健康年龄匹配的对照组相比,AUD 队列中的 SCS CNN 显示出腹侧外侧后核的明显萎缩(P = 0.01),而 NCS CNN 显示出腹侧后外侧核的虚假萎缩。基于 CNN 的丘脑核分割为 MPRAGE 图像中的丘脑核预测提供了一种快速自动的技术。将图像转换为有效的表示形式(例如 WMn-MPRAGE)可以进一步提高分割性能。
Magn Reson Imaging. 2020-11
Magn Reson Med. 2021-5
Brain Struct Funct. 2024-6
Mult Scler. 2023-2
Acta Neuropathol. 2025-5-28
Imaging Neurosci (Camb). 2024-5-8
Nat Rev Neurosci. 2024-12
Neurol Neuroimmunol Neuroinflamm. 2024-5
Brain Struct Funct. 2024-6
Curr Res Neurobiol. 2023-3-24
J Alzheimers Dis. 2021
J Appl Clin Med Phys. 2021-1
Magn Reson Imaging. 2020-11
Sci Rep. 2020-2-28