CNRS, CerCo (Brain and Cognition Research Center), Paul Sabatier University, Toulouse, France.
INSERM, ToNiC (Toulouse NeuroImaging Center), Paul Sabatier University, Toulouse, France.
Brain Struct Funct. 2024 Jun;229(5):1087-1101. doi: 10.1007/s00429-024-02777-5. Epub 2024 Mar 28.
Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for the use of T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3 T and 7 T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.
准确分割丘脑核对于理解其在健康认知和病理学中的作用至关重要,但由于图像对比度差,在标准 T1 加权(T1w)磁共振成像(MRI)上实现这一目标具有挑战性。白质消除(WMn)MRI 序列可提高丘脑内对比度,但不属于临床方案或现有数据库的一部分。在这项研究中,我们引入了基于直方图的多项式合成(HIPS),这是一种快速预处理变换步骤,使用强度变换的多项式逼近从标准 T1w MRI 中合成 WMn 样图像对比度。HIPS 被纳入 THalamus Optimized Multi-Atlas Segmentation(THOMAS)管道,这是一种为 WMn MRI 开发和优化的方法。HIPS-THOMAS 与基于卷积神经网络(CNN)的分割方法和为使用 T1w 图像(T1w-THOMAS)而修改的 THOMAS 进行了比较。这三种方法的稳健性和准确性在不同的图像对比度(MPRAGE、SPGR 和 MP2RAGE)、扫描仪制造商(PHILIPS、GE 和 Siemens)和场强(3T 和 7T)下进行了测试。HIPS 转换后的图像提高了丘脑内的对比度和丘脑边界,与 CNN 方法和 T1w-THOMAS 相比,HIPS-THOMAS 产生的平均 Dice 系数显著更高,体积误差更小。最后,使用经常旅行的人体幻影 MRI 数据集对三种方法进行了比较,以评估它们在扫描仪间和扫描仪内的变异性,HIPS 显示出最小的扫描仪间变异性,并且在扫描仪内变异性方面与 T1w-THOMAS 表现相当。总之,我们的研究结果突出了 HIPS 在增强标准 T1w MRI 中丘脑核分割的有效性和稳健性。
Brain Struct Funct. 2024-6
Magn Reson Med. 2021-5
Magn Reson Imaging. 2020-11
Hum Brain Mapp. 2024-12-15
Brain Struct Funct. 2025-8-25
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-4-18
Cell Rep. 2025-4-22
Imaging Neurosci (Camb). 2024-5-8
J Neurol. 2025-1-7
Nat Rev Neurosci. 2024-12
J Alzheimers Dis. 2021
J Neurosurg Pediatr. 2018-3