Suppr超能文献

预测食管鳞状细胞癌浅表淋巴结转移的列线图

A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma.

作者信息

Zhang Weifeng, Chen Han, Zhang Guoxin, Jin Guangfu

机构信息

Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China.

The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210000, China.

出版信息

J Biomed Res. 2021 Aug 3;35(5):361-370. doi: 10.7555/JBR.35.20210034.

Abstract

Superficial esophageal squamous cell carcinoma (SESCC) is defined as carcinoma with mucosal or submucosal invasion, regardless of regional lymph node metastasis (LNM). The lymph node status is not only a key factor to determine the training strategy, but also the most important prognostic factor in esophageal cancer. In this study, we establish a clinical nomogram for predicting LNM in patients with SESCC. A predictive model was established based on the training cohort composed of 711 patients who underwent esophagectomy for SESCC from December 2009 to June 2018. A prospective cohort of 203 patients from June 2018 to January 2019 was used for validation. Favorable calibration and well-fitted decision curve analysis were conducted and good discrimination was observed (concordance index [C-index], 0.860; 95% confidence interval [CI], 0.825-0.894) through internal validation. The external validation cohort presented good discrimination (C-index, 0.916; 95% CI, 0.860-0.971). This model may facilitate the prediction of LNM in patients with SESCCs.

摘要

浅表性食管鳞状细胞癌(SESCC)被定义为侵犯黏膜或黏膜下层的癌,无论有无区域淋巴结转移(LNM)。淋巴结状态不仅是决定治疗策略的关键因素,也是食管癌最重要的预后因素。在本研究中,我们建立了一个用于预测SESCC患者LNM的临床列线图。基于2009年12月至2018年6月因SESCC接受食管切除术的711例患者组成的训练队列建立了预测模型。使用2018年6月至2019年1月的203例患者的前瞻性队列进行验证。通过内部验证进行了良好的校准和拟合良好的决策曲线分析,并观察到良好的区分度(一致性指数[C指数],0.860;95%置信区间[CI],0.825 - 0.894)。外部验证队列显示出良好的区分度(C指数,0.916;95%CI,0.860 - 0.971)。该模型可能有助于预测SESCC患者的LNM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0138/8502689/923f8d034d7d/jbr-35-5-361-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验