Muttenthaler Lukas, Hebart Martin N
Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Machine Learning Group, Technical University of Berlin, Berlin, Germany.
Front Neuroinform. 2021 Sep 22;15:679838. doi: 10.3389/fninf.2021.679838. eCollection 2021.
Over the past decade, deep neural network (DNN) models have received a lot of attention due to their near-human object classification performance and their excellent prediction of signals recorded from biological visual systems. To better understand the function of these networks and relate them to hypotheses about brain activity and behavior, researchers need to extract the activations to images across different DNN layers. The abundance of different DNN variants, however, can often be unwieldy, and the task of extracting DNN activations from different layers may be non-trivial and error-prone for someone without a strong computational background. Thus, researchers in the fields of cognitive science and computational neuroscience would benefit from a library or package that supports a user in the extraction task. THINGSvision is a new Python module that aims at closing this gap by providing a simple and unified tool for extracting layer activations for a wide range of pretrained and randomly-initialized neural network architectures, even for users with little to no programming experience. We demonstrate the general utility of THINGsvision by relating extracted DNN activations to a number of functional MRI and behavioral datasets using representational similarity analysis, which can be performed as an integral part of the toolbox. Together, THINGSvision enables researchers across diverse fields to extract features in a streamlined manner for their custom image dataset, thereby improving the ease of relating DNNs, brain activity, and behavior, and improving the reproducibility of findings in these research fields.
在过去十年中,深度神经网络(DNN)模型因其近乎人类的目标分类性能以及对生物视觉系统记录信号的出色预测能力而备受关注。为了更好地理解这些网络的功能,并将它们与有关大脑活动和行为的假设联系起来,研究人员需要提取不同DNN层对图像的激活情况。然而,大量不同的DNN变体往往难以处理,对于没有强大计算背景的人来说,从不同层提取DNN激活情况的任务可能并非易事且容易出错。因此,认知科学和计算神经科学领域的研究人员将受益于一个支持用户进行提取任务的库或软件包。THINGsvision是一个新的Python模块,旨在通过为广泛的预训练和随机初始化神经网络架构提供一个简单统一的工具来填补这一空白,即使对于几乎没有编程经验的用户也是如此。我们通过使用表征相似性分析将提取的DNN激活情况与一些功能磁共振成像和行为数据集相关联,展示了THINGsvision的一般实用性,这可以作为工具箱的一个组成部分来执行。总之,THINGsvision使不同领域的研究人员能够以简化的方式为他们的自定义图像数据集提取特征,从而提高将DNN、大脑活动和行为联系起来的便利性,并提高这些研究领域中研究结果的可重复性。