Suppr超能文献

特征加权代表性相似性分析:一种提高计算模型、大脑和行为之间拟合度的方法。

Feature-reweighted representational similarity analysis: A method for improving the fit between computational models, brains, and behavior.

机构信息

Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

出版信息

Neuroimage. 2022 Aug 15;257:119294. doi: 10.1016/j.neuroimage.2022.119294. Epub 2022 May 14.

Abstract

Representational Similarity Analysis (RSA) has emerged as a popular method for relating representational spaces from human brain activity, behavioral data, and computational models. RSA is based on the comparison of representational (dis-)similarity matrices (RDMs or RSMs), which characterize the pairwise (dis-)similarities of all conditions across all features (e.g. fMRI voxels or units of a model). However, classical RSA treats each feature as equally important. This 'equal weights' assumption contrasts with the flexibility of multivariate decoding, which reweights individual features for predicting a target variable. As a consequence, classical RSA may lead researchers to underestimate the correspondence between a model and a brain region and, in case of model comparison, may lead them to select an inferior model. The aim of this work is twofold: First, we sought to broadly test feature-reweighted RSA (FR-RSA) applied to computational models and reveal the extent to which reweighting model features improves RSM correspondence and affects model selection. Previous work suggested that reweighting can improve model selection in RSA but it has remained unclear to what extent these results generalize across datasets and data modalities. To draw more general conclusions, we utilized a range of publicly available datasets and three popular deep neural networks (DNNs). Second, we propose voxel-reweighted RSA, a novel use case of FR-RSA that reweights fMRI voxels, mirroring the rationale of multivariate decoding of optimally combining voxel activity patterns. We found that reweighting individual model units markedly improved the fit between model RSMs and target RSMs derived from several fMRI and behavioral datasets and affected model selection, highlighting the importance of considering FR-RSA. For voxel-reweighted RSA, improvements in RSM correspondence were even more pronounced, demonstrating the utility of this novel approach. We additionally show that classical noise ceilings can be exceeded when FR-RSA is applied and propose an updated approach for their computation. Taken together, our results broadly validate the use of FR-RSA for improving the fit between computational models, brain, and behavioral data, allowing us to better adjudicate between competing computational models. Further, our results suggest that FR-RSA applied to brain measurement channels could become an important new method to assess the correspondence between representational spaces.

摘要

代表性相似性分析 (RSA) 已成为一种将人类大脑活动、行为数据和计算模型的代表性空间联系起来的流行方法。RSA 基于代表性(不)相似性矩阵 (RDM 或 RSM) 的比较,这些矩阵表征了所有特征(例如 fMRI 体素或模型的单元)中所有条件的成对(不)相似性。然而,经典 RSA 将每个特征视为同等重要。这种“等权重”假设与多元解码的灵活性形成对比,多元解码为预测目标变量对各个特征进行重新加权。因此,经典 RSA 可能导致研究人员低估模型和大脑区域之间的对应关系,并且在模型比较的情况下,可能导致他们选择较差的模型。这项工作的目的有两个:首先,我们广泛测试了应用于计算模型的加权特征 RSA (FR-RSA),并揭示了对模型特征进行重新加权以提高 RSM 对应关系并影响模型选择的程度。先前的工作表明,在 RSA 中重新加权可以改善模型选择,但仍不清楚这些结果在多大程度上可以推广到不同的数据集和数据模态。为了得出更普遍的结论,我们利用了一系列公开可用的数据集和三个流行的深度神经网络 (DNN)。其次,我们提出了体素加权 RSA,这是 FR-RSA 的一种新应用案例,它对 fMRI 体素进行加权,反映了对最佳组合体素活动模式进行多元解码的原理。我们发现,对单个模型单元进行重新加权可以显著改善模型 RSM 与从几个 fMRI 和行为数据集得出的目标 RSM 之间的拟合度,并影响模型选择,突出了考虑 FR-RSA 的重要性。对于体素加权 RSA,RSM 对应度的提高更为明显,证明了这种新方法的实用性。我们还表明,当应用 FR-RSA 时,可以超过经典噪声上限,并提出了一种计算其的更新方法。总之,我们的结果广泛验证了 FR-RSA 在提高计算模型、大脑和行为数据之间的拟合度方面的使用,使我们能够更好地裁决竞争计算模型。此外,我们的结果表明,应用于大脑测量通道的 FR-RSA 可能成为评估代表性空间之间对应关系的一种重要新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验