Laddada Wissame, Soualmia Lina F, Zanni-Merk Cecilia, Ayadi Ali, Frydman Claudia, L'Hote India, Imbert Isabelle
Normandie Universit, LITIS, 7600 Rouen, France.
Aix-Marseille Universit, LIS, 13009 Marseille, France.
Procedia Comput Sci. 2021;192:487-496. doi: 10.1016/j.procs.2021.08.050. Epub 2021 Oct 1.
Understanding the replication machinery of viruses contributes to suggest and try effective antiviral strategies. Exhaustive knowledge about the proteins structure, their function, or their interaction is one of the preconditions for successfully modeling it. In this context, modeling methods based on a formal representation with a high semantic expressiveness would be relevant to extract proteins and their nucleotide or amino acid sequences as an element from the replication process. Consequently, our approach relies on the use of semantic technologies to design the SARS-CoV-2 replication machinery. This provides the ability to infer new knowledge related to each step of the virus replication. More specifically, we developed an ontology-based approach enriched with reasoning process of a complete replication machinery process for SARS-CoV-2. We present in this paper a partial overview of our ontology OntoRepliCov to describe one step of this process, namely, the continuous translation or protein synthesis, through classes, properties, axioms, and SWRL (Semantic Web Rule Language) rules.
了解病毒的复制机制有助于提出并尝试有效的抗病毒策略。详尽掌握蛋白质结构、其功能或它们之间的相互作用是成功对其进行建模的前提条件之一。在这种情况下,基于具有高语义表达能力的形式化表示的建模方法对于从复制过程中提取蛋白质及其核苷酸或氨基酸序列作为元素是相关的。因此,我们的方法依赖于使用语义技术来设计新冠病毒的复制机制。这提供了推断与病毒复制每个步骤相关的新知识的能力。更具体地说,我们开发了一种基于本体的方法,该方法丰富了新冠病毒完整复制机制过程的推理过程。我们在本文中对我们的本体OntoRepliCov进行了部分概述,以通过类、属性、公理和SWRL(语义网规则语言)规则来描述这个过程的一个步骤,即连续翻译或蛋白质合成。