Suppr超能文献

相互了解:PPIMem,一种预测跨膜蛋白-蛋白复合物的新方法。

Getting to know each other: PPIMem, a novel approach for predicting transmembrane protein-protein complexes.

作者信息

Khazen Georges, Gyulkhandanian Aram, Issa Tina, Maroun Rachid C

机构信息

Computer Science and Mathematics Department, Lebanese American University, Byblos, Lebanon.

Inserm U1204/Université d'Evry/Université Paris-Saclay, Structure-Activité des Biomolécules Normales et Pathologiques, 91025 Evry, France.

出版信息

Comput Struct Biotechnol J. 2021 Sep 17;19:5184-5197. doi: 10.1016/j.csbj.2021.09.013. eCollection 2021.

Abstract

Because of their considerable number and diversity, membrane proteins and their macromolecular complexes represent the functional units of cells. Their quaternary structure may be stabilized by interactions between the α-helices of different proteins in the hydrophobic region of the cell membrane. Membrane proteins equally represent potential pharmacological targets par excellence for various diseases. Unfortunately, their experimental 3D structure and that of their complexes with other intramembrane protein partners are scarce due to technical difficulties. To overcome this key problem, we devised PPIMem, a computational approach for the specific prediction of higher-order structures of α-helical transmembrane proteins. The novel approach involves proper identification of the amino acid residues at the interface of molecular complexes with a 3D structure. The identified residues compose then nonlinear interaction motifs that are conveniently expressed as mathematical regular expressions. These are efficiently implemented for motif search in amino acid sequence databases, and for the accurate prediction of intramembrane protein-protein complexes. Our template interface-based approach predicted 21,544 binary complexes between 1,504 eukaryotic plasma membrane proteins across 39 species. We compare our predictions to experimental datasets of protein-protein interactions as a first validation method. The online database that results from the PPIMem algorithm with the annotated predicted interactions are implemented as a web server and can be accessed directly at https://transint.univ-evry.fr.

摘要

由于其数量众多且种类多样,膜蛋白及其大分子复合物构成了细胞的功能单元。它们的四级结构可能通过细胞膜疏水区域中不同蛋白质的α螺旋之间的相互作用而得以稳定。膜蛋白同样是各类疾病极为理想的潜在药理学靶点。不幸的是,由于技术难题,它们的实验性三维结构以及与其他膜内蛋白伙伴形成的复合物的结构很少见。为克服这一关键问题,我们设计了PPIMem,这是一种用于特异性预测α螺旋跨膜蛋白高阶结构的计算方法。这种新方法涉及对具有三维结构的分子复合物界面处氨基酸残基的正确识别。然后,所识别的残基构成非线性相互作用基序,这些基序可方便地表示为数学正则表达式。这些正则表达式被有效地用于在氨基酸序列数据库中进行基序搜索,以及准确预测膜内蛋白-蛋白复合物。我们基于模板界面的方法预测了39个物种中1504个真核细胞质膜蛋白之间的21544个二元复合物。作为第一种验证方法,我们将我们的预测结果与蛋白质-蛋白质相互作用的实验数据集进行了比较。由PPIMem算法生成的带有注释的预测相互作用的在线数据库被实现为一个网络服务器,可直接通过https://transint.univ-evry.fr访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f0/8476896/6cba39eec384/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验