Cruz Luís, Correa Juan, Mateus Nuno, de Freitas Victor, Tawara Maun H, Fernandez-Megia Eduardo
REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
ACS Appl Polym Mater. 2021 Mar 12;3(3):1457-1464. doi: 10.1021/acsapm.0c01321. Epub 2021 Mar 3.
Anionic dendrimers have recently emerged as hosts (H) for the color stabilization of the flavylium cation of anthocyanin guests (G). The interaction with a promising, more hydrophobic pyranoanthocyanin illustrates how the structure and concentration of the dye modulate the host-guest interaction mechanisms. NMR and UV-vis titrations (host over guest, from G/H ratio 2089 to 45) showed that at relatively low dendrimer-to-dye concentrations, ion pairs at the dendrimer periphery prevail over dye encapsulation. This promotes the deaggregation of the dye, not previously observed with anthocyanins, and related to the more hydrophobic nature of this dye (deshielding of the dye H signals, higher relaxation times, constant diffusion coefficient). As the dendrimer concentration increases, the dye encapsulation, earlier unseen with structurally simpler flavylium dyes, becomes dominant (shielding and broadening of the dye H signals and lower and diffusion coefficient). The interaction parameters of the encapsulation process ( ∼ 4.51 × 10 M, ∼ 150) indicate the binding of ca. one pyranoanthocyanin molecule by each sulfate terminal group. Our results provide insights into the ability of dendrimers to host structurally diverse pyranoflavylium-based dyes and how the structure of the latter modulates the range of interactions involved. The encapsulation ability of this dendrimer to such pH-sensitive dyes is envisioned for the host-guest sensing applications such as pH-responsive systems used for example in food smart packaging.
阴离子树枝状大分子最近已成为用于稳定花青素客体(G)的黄酮阳离子颜色的主体(H)。与一种有前景的、疏水性更强的吡喃花青素的相互作用说明了染料的结构和浓度如何调节主客体相互作用机制。核磁共振(NMR)和紫外可见光谱滴定(主体过量于客体,G/H比从2089到45)表明,在相对较低的树枝状大分子与染料浓度下,树枝状大分子外围的离子对比染料包封更为普遍。这促进了染料的解聚,这是花青素以前未观察到的,并且与该染料更疏水的性质有关(染料H信号去屏蔽、更高的弛豫时间、恒定的扩散系数)。随着树枝状大分子浓度的增加,染料包封变得占主导地位(染料H信号屏蔽和变宽以及更低的弛豫时间和扩散系数),而在结构更简单的黄酮染料中以前未见过这种情况。包封过程的相互作用参数(约4.51×10 M,约150)表明每个硫酸根端基结合约一个吡喃花青素分子。我们的结果为树枝状大分子容纳结构多样的基于吡喃黄酮的染料的能力以及后者的结构如何调节所涉及的相互作用范围提供了见解。这种树枝状大分子对这种pH敏感染料的包封能力被设想用于主客体传感应用,例如用于食品智能包装的pH响应系统。