IEEE Trans Neural Syst Rehabil Eng. 2021;29:2103-2111. doi: 10.1109/TNSRE.2021.3119390. Epub 2021 Oct 20.
Gait tests as part of home monitoring study protocols for patients with movement disorders may provide valuable standardized anchor-points for real-world gait analysis using inertial measurement units (IMUs). However, analyzing unsupervised gait tests relies on reliable test annotations by the patients requiring a potentially error-prone interaction with the recording system. To overcome this limitation, this work presents a novel algorithmic pipeline for the automated detection of unsupervised standardized gait tests from continuous real-world IMU data. In a study with twelve Parkinson's disease patients, we recorded real-world gait data over two weeks using foot-worn IMUs. During continuous daily recordings, the participants performed series of three consecutive 4×10 -Meters-Walking-Tests ( 4×10 MWTs) at different walking speeds, besides their usual daily-living activities. The algorithm first detected these gait test series using a gait sequence detection algorithm, a peak enhancement pipeline, and subsequence Dynamic Time Warping and then decomposed them into single 4×10 MWTs based on the walking speed. In the evaluation with 419 available gait test series, the detection reached an F1-score of 88.9% and the decomposition an F1-score of 94.0%. A concurrent validity evaluation revealed very good agreement between spatio-temporal gait parameters derived from manually labelled and automatically detected 4×10 MWTs. Our algorithm allows to remove the burden of system interaction from the patients and reduces the time for manual data annotation for researchers. The study contributes to an improved automated processing of real-world IMU gait data and enables a simple integration of standardized tests into continuous long-term recordings. This will help to bridge the gap between supervised and unsupervised gait assessment.
步态测试作为运动障碍患者家庭监测研究方案的一部分,可以为使用惯性测量单元 (IMU) 的真实世界步态分析提供有价值的标准化锚点。然而,分析无人监督的步态测试依赖于患者进行可靠的测试标注,这需要与记录系统进行潜在易错的交互。为了克服这一限制,本研究提出了一种新颖的算法流程,用于从连续的真实世界 IMU 数据中自动检测无人监督的标准化步态测试。在一项针对 12 名帕金森病患者的研究中,我们使用穿戴在脚上的 IMU 记录了两周的真实世界步态数据。在连续的日常记录中,参与者以不同的步行速度在不同的时间间隔进行了连续三次的 4×10 米行走测试(4×10 MWT),同时还进行了日常的活动。该算法首先使用步态序列检测算法、峰值增强管道和子序列动态时间规整来检测这些步态测试序列,然后根据步行速度将它们分解为单个的 4×10 MWT。在 419 个可用的步态测试序列的评估中,检测达到了 88.9%的 F1 分数,分解达到了 94.0%的 F1 分数。一项并发有效性评估表明,从手动标记和自动检测的 4×10 MWT 中得出的时空步态参数之间具有非常好的一致性。我们的算法可以减轻患者与系统交互的负担,并减少研究人员手动数据标注的时间。该研究有助于改进对真实世界 IMU 步态数据的自动化处理,并能够将标准化测试简单地集成到连续的长期记录中。这将有助于弥合监督和无人监督步态评估之间的差距。