IEEE J Biomed Health Inform. 2020 Jul;24(7):1869-1878. doi: 10.1109/JBHI.2020.2975361. Epub 2020 Feb 20.
Mobile gait analysis using wearable inertial measurement units (IMUs) provides valuable insights for the assessment of movement impairments in different neurological and musculoskeletal diseases, for example Parkinson's disease (PD). The increase in data volume due to arising long-term monitoring requires valid, robust and efficient analysis pipelines. In many studies an upstream detection of gait is therefore applied. However, current methods do not provide a robust way to successfully reject non-gait signals. Therefore, we developed a novel algorithm for the detection of gait from continuous inertial data of sensors worn at the feet. The algorithm is focused not only on a high sensitivity but also a high specificity for gait. Sliding windows of IMU signals recorded from the feet of PD patients were processed in the frequency domain. Gait was detected if the frequency spectrum contained specific patterns of harmonic frequencies. The approach was trained and evaluated on 150 clinical measurements containing standardized gait and cyclic movement tests. The detection reached a sensitivity of 0.98 and a specificity of 0.96 for the best sensor configuration (angular rate around the medio-lateral axis). On an independent validation data set including 203 unsupervised, semi-standardized gait tests, the algorithm achieved a sensitivity of 0.97. Our algorithm for the detection of gait from continuous IMU signals works reliably and showed promising results for the application in the context of free-living and non-standardized monitoring scenarios.
使用可穿戴惯性测量单元 (IMU) 进行移动步态分析为评估不同神经和肌肉骨骼疾病(例如帕金森病 (PD))中的运动障碍提供了有价值的见解。由于出现了长期监测,数据量的增加需要有效的、稳健的和高效的分析管道。因此,在许多研究中,都会应用上行的步态检测。然而,当前的方法并没有提供一种稳健的方法来成功拒绝非步态信号。因此,我们开发了一种从传感器连续惯性数据中检测步态的新算法,这些传感器被佩戴在脚上。该算法不仅注重高灵敏度,而且注重步态的高特异性。对 PD 患者脚部记录的 IMU 信号的滑动窗口在频域中进行处理。如果频谱包含特定的谐波频率模式,则检测到步态。该方法在包含标准化步态和周期性运动测试的 150 个临床测量中进行了训练和评估。对于最佳传感器配置(围绕中-侧轴的角速率),该检测的灵敏度为 0.98,特异性为 0.96。在包括 203 个未监督、半标准化步态测试的独立验证数据集上,该算法的灵敏度为 0.97。我们的连续 IMU 信号步态检测算法可靠地工作,并在自由生活和非标准化监测场景中的应用中取得了有前景的结果。