Suppr超能文献

从A(一致性)到Z(Z分数)的统计学:医学研究中关联、一致性、诊断准确性、效应量、异质性和可靠性常用指标解读指南。

Statistics From A (Agreement) to Z (z Score): A Guide to Interpreting Common Measures of Association, Agreement, Diagnostic Accuracy, Effect Size, Heterogeneity, and Reliability in Medical Research.

作者信息

Schober Patrick, Mascha Edward J, Vetter Thomas R

机构信息

From the Department of Anesthesiology, Amsterdam University Medical Centers (UMC), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

Departments of Quantitative Health Sciences and Outcomes Research, Cleveland Clinic, Cleveland, Ohio.

出版信息

Anesth Analg. 2021 Dec 1;133(6):1633-1641. doi: 10.1213/ANE.0000000000005773.

Abstract

Researchers reporting results of statistical analyses, as well as readers of manuscripts reporting original research, often seek guidance on how numeric results can be practically and meaningfully interpreted. With this article, we aim to provide benchmarks for cutoff or cut-point values and to suggest plain-language interpretations for a number of commonly used statistical measures of association, agreement, diagnostic accuracy, effect size, heterogeneity, and reliability in medical research. Specifically, we discuss correlation coefficients, Cronbach's alpha, I2, intraclass correlation (ICC), Cohen's and Fleiss' kappa statistics, the area under the receiver operating characteristic curve (AUROC, concordance statistic), standardized mean differences (Cohen's d, Hedge's g, Glass' delta), and z scores. We base these cutoff values on what has been previously proposed by experts in the field in peer-reviewed literature and textbooks, as well as online statistical resources. We integrate, adapt, and/or expand previous suggestions in attempts to (a) achieve a compromise between divergent recommendations, and (b) propose cutoffs that we perceive sensible for the field of anesthesia and related specialties. While our suggestions provide guidance on how the results of statistical tests are typically interpreted, this does not mean that the results can universally be interpreted as suggested here. We discuss the well-known inherent limitations of using cutoff values to categorize continuous measures. We further emphasize that cutoff values may depend on the specific clinical or scientific context. Rule-of-the thumb approaches to the interpretation of statistical measures should therefore be used judiciously.

摘要

报告统计分析结果的研究人员,以及阅读报告原创研究的手稿的读者,常常寻求有关如何切实且有意义地解释数值结果的指导。通过本文,我们旨在为临界值或切点值提供基准,并针对医学研究中一些常用的关联、一致性、诊断准确性、效应大小、异质性和可靠性的统计量提出通俗易懂的解释。具体而言,我们讨论相关系数、克朗巴哈系数、I²、组内相关系数(ICC)、科恩系数和弗莱iss卡方统计量、受试者工作特征曲线下面积(AUROC,一致性统计量)、标准化均数差(科恩d、赫奇斯g、格拉斯δ)以及z分数。我们依据该领域专家在同行评审文献、教科书以及在线统计资源中先前提出的建议来确定这些临界值。我们整合、调整和/或扩展先前的建议,以试图(a)在不同的建议之间达成妥协,以及(b)提出我们认为对麻醉及相关专业领域合理的临界值。虽然我们的建议为如何通常解释统计检验结果提供了指导,但这并不意味着结果可以普遍按照此处建议的方式进行解释。我们讨论了使用临界值对连续测量进行分类的众所周知的固有局限性。我们进一步强调,临界值可能取决于特定的临床或科学背景。因此,在解释统计量时采用经验法则方法应谨慎使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验