Karlsen Anders Peder Højer, Sunde Pernille Bjersand, Rasmussen Ida Houtved, Folkersen Caroline, Tran Trang Xuan Minh, Nguyen Markus Kien Trung, Elkjær Line Maria, Lunn Troels Haxholdt, Meyhoff Christian S, Andersen Jonas Valbjørn, Mathiesen Ole, Olsen Markus Harboe
Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark.
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Acta Anaesthesiol Scand. 2025 Jul;69(6):e70071. doi: 10.1111/aas.70071.
Despite advances in pain management, inadequate pain relief and opioid-related adverse events remain common challenges in perioperative care, often contributing to prolonged recovery and reduced quality of life. The perioperative opioid algorithms for individualized dosing (OPIAID) project aims to develop machine-learning algorithms tailored to provide patient-specific opioid dosing across the different phases of perioperative care. For each phase, eight models are trained on granular data from 1.1 million surgical procedures, including demographic and surgical details, vital signs, administered analgesics, pain, and opioid-related adverse events. The two most accurate models will proceed to external validation. The best-performing model will subsequently be tested as a decision support against current standard of care.
This protocol describes the design and external validation of the intraoperative OPIAID algorithm, which suggests the end-of-surgery opioid dose intended for postoperative analgesia by approximating clinical performance and evaluating reliability, agreement, and calibration.
In this multicenter, TRIPOD+AI-adherent, prospective observational cohort study, we will collect data from a diverse surgical population of 656 adult patients undergoing elective or acute surgery under general anesthesia. All patients will require intraoperative opioid administration at the end of surgery for postoperative pain management and a subsequent stay in the post-anesthesia care unit. The cohort will be used to externally validate two machine-learning models through standardized measures of reliability, agreement, and calibration, and thereby designate the intraoperative OPIAID algorithm. Subsequently, the cohort will be used to approximate the clinical efficacy, safety and overall performance of the intraoperative OPIAID algorithm's recommended doses versus the clinician-administered doses. These comparisons will be based on each approach's proximity to a golden standard "optimal dose," which is calculated based on a predefined generic ruleset incorporating intraoperative opioid dosing, postoperative pain, opioid-related adverse events, and need for rescue opioid administrations.
The intraoperative OPIAID algorithm is intended as a clinical decision aid for anesthesiologists and nurse anesthetists in providing adequate postoperative pain management.
尽管疼痛管理取得了进展,但疼痛缓解不足和阿片类药物相关不良事件仍是围手术期护理中常见的挑战,常常导致恢复时间延长和生活质量下降。围手术期个性化给药阿片类药物算法(OPIAID)项目旨在开发机器学习算法,以针对围手术期护理的不同阶段提供患者特异性阿片类药物给药方案。对于每个阶段,在来自110万例外科手术的详细数据上训练八个模型,这些数据包括人口统计学和手术细节、生命体征、给予的镇痛药、疼痛以及阿片类药物相关不良事件。两个最准确的模型将进入外部验证阶段。表现最佳的模型随后将作为决策支持工具与当前的护理标准进行测试。
本方案描述了术中OPIAID算法的设计和外部验证,该算法通过近似临床表现并评估可靠性、一致性和校准度,来建议用于术后镇痛的手术结束时阿片类药物剂量。
在这项多中心、遵循TRIPOD+AI标准的前瞻性观察性队列研究中,我们将从656例接受全身麻醉下择期或急诊手术的成年患者这一多样化手术人群中收集数据。所有患者在手术结束时都需要给予术中阿片类药物以进行术后疼痛管理,并随后入住麻醉后护理单元。该队列将用于通过可靠性、一致性和校准度的标准化测量对两个机器学习模型进行外部验证,从而确定术中OPIAID算法。随后,该队列将用于近似术中OPIAID算法推荐剂量与临床医生给予剂量相比的临床疗效、安全性和总体性能。这些比较将基于每种方法与黄金标准“最佳剂量”的接近程度,该“最佳剂量”是根据包含术中阿片类药物给药、术后疼痛、阿片类药物相关不良事件以及急救阿片类药物给药需求的预定义通用规则集计算得出的。
术中OPIAID算法旨在作为麻醉医生和麻醉护士在提供充分术后疼痛管理方面的临床决策辅助工具。