Suppr超能文献

存在多种不完美诊断测试时的个体水平传染病模型。

An individual level infectious disease model in the presence of uncertainty from multiple, imperfect diagnostic tests.

机构信息

Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA.

出版信息

Biometrics. 2023 Mar;79(1):426-436. doi: 10.1111/biom.13579. Epub 2021 Oct 28.

Abstract

Bayesian compartmental infectious disease models yield important inference on disease transmission by appropriately accounting for the dynamics and uncertainty of infection processes. In addition to estimating transition probabilities and reproductive numbers, these statistical models allow researchers to assess the probability of disease risk and quantify the effectiveness of interventions. These infectious disease models rely on data collected from all individuals classified as positive based on various diagnostic tests. In infectious disease testing, however, such procedures produce both false-positives and false-negatives at varying rates depending on the sensitivity and specificity of the diagnostic tests being used. We propose a novel Bayesian spatio-temporal infectious disease modeling framework that accounts for the additional uncertainty in the diagnostic testing and classification process that provides estimates of the important transmission dynamics of interest to researchers. The method is applied to data on the 2006 mumps epidemic in Iowa, in which over 6,000 suspected mumps cases were tested using a buccal or oral swab specimen, a urine specimen, and/or a blood specimen. Although all procedures are believed to have high specificities, the sensitivities can be low and vary depending on the timing of the test as well as the vaccination status of the individual being tested.

摘要

贝叶斯房室传染病模型通过适当考虑感染过程的动态和不确定性,为疾病传播提供了重要的推断。除了估计转移概率和繁殖数外,这些统计模型还允许研究人员评估疾病风险的概率,并量化干预措施的效果。这些传染病模型依赖于从所有基于各种诊断测试被归类为阳性的个体中收集的数据。然而,在传染病检测中,这些程序会根据所用诊断测试的灵敏度和特异性以不同的速率产生假阳性和假阴性。我们提出了一种新的贝叶斯时空传染病建模框架,该框架考虑了诊断测试和分类过程中额外的不确定性,为研究人员提供了对感兴趣的重要传播动态的估计。该方法应用于爱荷华州 2006 年腮腺炎流行的数据,其中使用口腔或口腔拭子标本、尿液标本和/或血液标本对 6000 多例疑似腮腺炎病例进行了检测。尽管所有程序都被认为具有很高的特异性,但灵敏度可能较低,并且取决于测试的时间以及接受测试的个体的疫苗接种状态。

相似文献

1
2
A spatial epidemic model for disease spread over a heterogeneous spatial support.
Stat Med. 2016 Feb 28;35(5):721-33. doi: 10.1002/sim.6730. Epub 2015 Sep 13.
4
Geographically dependent individual-level models for infectious diseases transmission.
Biostatistics. 2022 Jan 13;23(1):1-17. doi: 10.1093/biostatistics/kxaa009.
5
A path-specific SEIR model for use with general latent and infectious time distributions.
Biometrics. 2013 Mar;69(1):101-8. doi: 10.1111/j.1541-0420.2012.01809.x. Epub 2013 Jan 16.
6
Goodness-of-fit measures for individual-level models of infectious disease in a Bayesian framework.
Spat Spatiotemporal Epidemiol. 2011 Dec;2(4):273-81. doi: 10.1016/j.sste.2011.07.012. Epub 2011 Aug 6.
8
Bayesian inference of hospital-acquired infectious diseases and control measures given imperfect surveillance data.
Biostatistics. 2007 Apr;8(2):383-401. doi: 10.1093/biostatistics/kxl017. Epub 2006 Aug 22.
10

引用本文的文献

2
Bayesian modeling of dynamic behavioral change during an epidemic.
Infect Dis Model. 2023 Aug 6;8(4):947-963. doi: 10.1016/j.idm.2023.08.002. eCollection 2023 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验