Suppr超能文献

传染病传播的地理相关个体层面模型。

Geographically dependent individual-level models for infectious diseases transmission.

作者信息

Mahsin M D, Deardon Rob, Brown Patrick

机构信息

Department of Mathematics and Statistics and Faculty of Veterinary Medicine, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.

Department of Statistical Sciences, University of Toronto, Canada.

出版信息

Biostatistics. 2022 Jan 13;23(1):1-17. doi: 10.1093/biostatistics/kxaa009.

Abstract

Infectious disease models can be of great use for understanding the underlying mechanisms that influence the spread of diseases and predicting future disease progression. Modeling has been increasingly used to evaluate the potential impact of different control measures and to guide public health policy decisions. In recent years, there has been rapid progress in developing spatio-temporal modeling of infectious diseases and an example of such recent developments is the discrete-time individual-level models (ILMs). These models are well developed and provide a common framework for modeling many disease systems; however, they assume the probability of disease transmission between two individuals depends only on their spatial separation and not on their spatial locations. In cases where spatial location itself is important for understanding the spread of emerging infectious diseases and identifying their causes, it would be beneficial to incorporate the effect of spatial location in the model. In this study, we thus generalize the ILMs to a new class of geographically dependent ILMs, to allow for the evaluation of the effect of spatially varying risk factors (e.g., education, social deprivation, environmental), as well as unobserved spatial structure, upon the transmission of infectious disease. Specifically, we consider a conditional autoregressive (CAR) model to capture the effects of unobserved spatially structured latent covariates or measurement error. This results in flexible infectious disease models that can be used for formulating etiological hypotheses and identifying geographical regions of unusually high risk to formulate preventive action. The reliability of these models is investigated on a combination of simulated epidemic data and Alberta seasonal influenza outbreak data ($2009$). This new class of models is fitted to data within a Bayesian statistical framework using Markov chain Monte Carlo methods.

摘要

传染病模型对于理解影响疾病传播的潜在机制以及预测未来疾病进展具有重要作用。建模已越来越多地用于评估不同控制措施的潜在影响,并指导公共卫生政策决策。近年来,传染病时空建模取得了快速进展,离散时间个体水平模型(ILMs)就是此类最新进展的一个例子。这些模型已得到充分发展,并为许多疾病系统的建模提供了一个通用框架;然而,它们假定两个个体之间疾病传播的概率仅取决于它们的空间距离,而不取决于它们的空间位置。在空间位置本身对于理解新发传染病的传播及其病因很重要的情况下,将空间位置的影响纳入模型将是有益的。在本研究中,我们因此将ILMs推广到一类新的地理相关ILMs,以评估空间变化的风险因素(如教育、社会剥夺、环境)以及未观察到的空间结构对传染病传播的影响。具体而言,我们考虑一个条件自回归(CAR)模型来捕捉未观察到的空间结构化潜在协变量或测量误差的影响。这产生了灵活的传染病模型,可用于形成病因假设并识别异常高风险的地理区域以制定预防措施。在模拟疫情数据和艾伯塔省季节性流感爆发数据(2009年)的组合上研究了这些模型的可靠性。这类新模型在贝叶斯统计框架内使用马尔可夫链蒙特卡罗方法拟合数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验