Steiger Katja, Quigley Neil Gerard, Groll Tanja, Richter Frauke, Zierke Maximilian Alexander, Beer Ambros Johannes, Weichert Wilko, Schwaiger Markus, Kossatz Susanne, Notni Johannes
Institut Für Pathologie Und Pathologische Anatomie, Technische Universität München, Munich, Germany.
Klinik Für Nuklearmedizin, Universitätsklinikum Ulm, Ulm, Germany.
EJNMMI Res. 2021 Oct 12;11(1):106. doi: 10.1186/s13550-021-00842-2.
In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvβ3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes.
The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5β1, αvβ8, αvβ6, and αvβ3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvβ3- and αvβ6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvβ3-targeted PET, αvβ6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer.
Novel radiopharmaceuticals targeting a number of different integrins, above all, αvβ6, have proven their clinical potential and will play an increasingly important role in future theranostics.
在核医学和诊疗一体化领域,整合素相关的研发在大部分时间里主要集中于“RGD肽”和αvβ3整合素亚型。然而,已知的整合素不少于24种,不含RGD序列的肽以及非肽类配体作为选择性整合素配体同样发挥着重要作用。另一方面,多聚化是一种成熟的提高结合结构亲和力的方法,但多聚体放射性药物尚未进入临床应用。在本综述中,我们描述了这些方面是如何在德国研究基金会的多组跨学科资助计划CRC 824的框架内交织在一起的,从而产生了一系列用于选择性成像各种整合素亚型的高效PET显像剂。
利用镓-68螯合剂TRAP制备了各种肽类和非肽类整合素配体的对称三聚体。临床前数据表明,所得的Ga-68示踪剂在整合素α5β1、αvβ8、αvβ6和αvβ3的PET成像方面具有很高的潜力。对于前三种整合素,我们提供了一些在人类癌症中的额外免疫组织化学数据,这表明了其未来的一些临床应用。最后,αvβ3和αvβ6整合素示踪剂在胰腺癌患者中的应用表明,与靶向αvβ3的PET不同,αvβ6整合素PET没有非靶向摄取的特征,因此能够显著改善此类癌症的成像。
靶向多种不同整合素,尤其是αvβ6的新型放射性药物已证明其临床潜力,并将在未来的诊疗一体化中发挥越来越重要的作用。