Sun Yao, Jiao Yanqi, Shi Chengcheng, Zhang Yang
School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
Comput Struct Biotechnol J. 2022;20:5014-5027. doi: 10.1016/j.csbj.2022.09.002. Epub 2022 Sep 7.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has led to a global pandemic. Deep learning (DL) technology and molecular dynamics (MD) simulation are two mainstream computational approaches to investigate the geometric, chemical and structural features of protein and guide the relevant drug design. Despite a large amount of research papers focusing on drug design for SARS-COV-2 using DL architectures, it remains unclear how the binding energy of the protein-protein/ligand complex dynamically evolves which is also vital for drug development. In addition, traditional deep neural networks usually have obvious deficiencies in predicting the interaction sites as protein conformation changes. In this review, we introduce the latest progresses of the DL and DL-based MD simulation approaches in structure-based drug design (SBDD) for SARS-CoV-2 which could address the problems of protein structure and binding prediction, drug virtual screening, molecular docking and complex evolution. Furthermore, the current challenges and future directions of DL-based MD simulation for SBDD are also discussed.
2019冠状病毒病(COVID-19)由严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)引起,已导致全球大流行。深度学习(DL)技术和分子动力学(MD)模拟是研究蛋白质的几何、化学和结构特征并指导相关药物设计的两种主流计算方法。尽管有大量研究论文聚焦于使用DL架构进行SARS-CoV-2的药物设计,但蛋白质-蛋白质/配体复合物的结合能如何动态演变仍不清楚,而这对药物开发也至关重要。此外,传统深度神经网络在预测蛋白质构象变化时的相互作用位点方面通常存在明显不足。在本综述中,我们介绍了DL及基于DL的MD模拟方法在针对SARS-CoV-2的基于结构的药物设计(SBDD)中的最新进展,这些进展可以解决蛋白质结构和结合预测、药物虚拟筛选、分子对接和复合物演变等问题。此外,还讨论了基于DL的MD模拟用于SBDD当前面临的挑战和未来方向。