Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
ACS Appl Mater Interfaces. 2021 Oct 27;13(42):50516-50523. doi: 10.1021/acsami.1c13173. Epub 2021 Oct 12.
Self-assembly of anisotropic metal nanoparticles serves as an effective bottom-up route for the nanofabrication of novel artifacts. However, there still are many challenges to rationally manipulate anisotropic particles due to the size and geometric restrictions. To avoid the aggregation and mishybridization from DNA sticky-end-guided assembly in buffer solution, in this work, we utilized a cation-controlled surface diffusion strategy to the spatial arrangement of gold nanorods (AuNRs) into 1D and 2D arrays by using DNA origami tiles as binding frames on the solid-liquid interface through π-π stacking interactions. To facilitate the further manipulation of those patterns, a novel pattern transfer method was introduced to transfer the arrays of AuNRs from a liquid to a dry ambient environment with high yield and minor structural damage. The results demonstrated a successful strategy of DNA origami-assisted, large-scale assembly of AuNRs for constructing complex superstructures with potential applications in the nanofabrication of plasmonic and electronic devices.
各向异性金属纳米粒子的自组装为新型制品的纳米制造提供了一种有效的自下而上的途径。然而,由于尺寸和几何形状的限制,要合理地操纵各向异性粒子仍然存在许多挑战。为了避免在缓冲溶液中 DNA 粘性末端引导组装时的聚集和杂交,在这项工作中,我们利用阳离子控制的表面扩散策略,通过π-π 堆积相互作用,将金纳米棒(AuNRs)排列成一维和二维阵列,方法是使用 DNA 折纸作为固体-液体界面上的结合框架。为了便于进一步操作这些图案,我们引入了一种新的图案转移方法,将 AuNRs 阵列从液体转移到干燥的环境中,具有高产率和较小的结构损伤。结果表明,这是一种成功的 DNA 折纸辅助 AuNR 大规模组装策略,可用于构建具有潜在应用于等离子体和电子器件纳米制造的复杂超结构。